Difference between revisions of "ApCoCoA-1:NC.LC"

From ApCoCoAWiki
m (replaced <quotes> tag by real quotes)
 
(36 intermediate revisions by 6 users not shown)
Line 1: Line 1:
 +
{{Version|1}}
 
<command>
 
<command>
 
<title>NC.LC</title>
 
<title>NC.LC</title>
 
<short_description>
 
<short_description>
Leading coefficient of a polynomial over a free associative K-algebra.
+
Leading coefficient of a non-zero polynomial in a non-commutative polynomial ring.
 
</short_description>
 
</short_description>
 
<syntax>
 
<syntax>
NC.LC(F:LIST):K
+
NC.LC(F:LIST):INT or RAT
 
</syntax>
 
</syntax>
 
<description>
 
<description>
 
<em>Please note:</em> The function(s) explained on this page is/are using the <em>ApCoCoAServer</em>. You will have to start the ApCoCoAServer in order to use it/them.
 
<em>Please note:</em> The function(s) explained on this page is/are using the <em>ApCoCoAServer</em>. You will have to start the ApCoCoAServer in order to use it/them.
 +
<par/>
 +
Please set non-commutative polynomial ring (via the command <ref>ApCoCoA-1:Use|Use</ref>) and word ordering (via the function <ref>ApCoCoA-1:NC.SetOrdering|NC.SetOrdering</ref>) before calling this function. The default word ordering is the length-lexicographic ordering ("LLEX"). For more information, please check the relevant commands and functions.
 
<itemize>
 
<itemize>
<item>Before calling the function, please set ring environment coefficient field <tt>K</tt>, alphabet <tt>X</tt> and ordering through the functions NC.SetFp(Prime) (or NC.UnsetFp()), NC.SetX(X) and NC.SetOrdering(Ordering) respectively. Default coefficient field is <tt>Q</tt>. Default ordering is length-lexicographic ordering (<quotes>LLEX</quotes>). For more information, please check the relevant functions.</item>
+
<item>@param <em>F</em>: a non-zero non-commutative polynomial. Each polynomial is represented as a LIST of LISTs, and each element in every inner LIST involves only one indeterminate or none (a constant). For example, the polynomial <tt>f=2x[2]y[1]x[2]^2-9y[2]x[1]^2x[2]^3+5</tt> is represented as F:=[[2x[1],y[1],x[2]^2], [-9y[2],x[1]^2,x[2]^3], [5]]. The zero polynomial <tt>0</tt> is represented as the empty LIST [].</item>
<item>@param <em>F</em>: a polynomial in <tt>K&lt;X&gt;</tt>. Each polynomial in <tt>K&lt;X&gt;</tt> is represented as a LIST of LISTs, which are pairs of form [c, w] where c is in <tt>K</tt> and w is a word in <tt>X*</tt>.  Unit in <tt>X*</tt> is empty word represented as an empty STRING <quotes></quotes>. <tt>0</tt> polynomial is represented as an empty LIST []. For example, polynomial <tt>F:=xy-y+1</tt> in <tt>K&lt;x,y&gt;</tt> is represented as F:=[[1,<quotes>xy</quotes>], [-1, <quotes>y</quotes>], [1,<quotes></quotes>]].</item>
+
<item>@return: an INT or a RAT, whhich is the leading coefficient of F with respect to the current word ordering.</item>
<item>@return: an element of K which is leading term of <tt>F</tt> with respect to current ordering. If <tt>F=0</tt>, then return <tt>0</tt>. </item>
 
 
</itemize>
 
</itemize>
 
<example>
 
<example>
NC.SetX(<quotes>abc</quotes>);
+
USE QQ[x[1..2]];
NC.SetOrdering(<quotes>ELIM</quotes>);
+
F:= [[x[1]^2], [2x[1],x[2]], [3x[2],x[1]],[4x[2]^2]]; -- x[1]^2+2x[1]x[2]+3x[2]x[1]+4x[2]^2
NC.RingEnv();
+
NC.SetOrdering("LLEX");
Coefficient ring : Q (float type in C++)
+
NC.LC(F);
Alphabet : abc
 
Ordering : ELIM
 
  
 +
[1]
 
-------------------------------
 
-------------------------------
F:=[[1,<quotes>ab</quotes>],[2,<quotes>aa</quotes>],[3,<quotes>bb</quotes>],[4,<quotes>bab</quotes>]];  
+
NC.SetOrdering("LRLEX");
NC.LC(F); -- ELIM ordering
+
NC.LC(F);
2
+
 
 +
[4]
 
-------------------------------
 
-------------------------------
NC.SetOrdering(<quotes>LLEX</quotes>);  
+
NC.SetOrdering("ELIM");
NC.LC(F); -- LLEX ordering
+
NC.LC(F);
4
+
 
 +
[1]
 
-------------------------------
 
-------------------------------
NC.LC([]);
+
NC.SetOrdering("DEGRLEX");
0
+
NC.LC(F);
 +
 
 +
[1]
 
-------------------------------
 
-------------------------------
 
</example>
 
</example>
 
</description>
 
</description>
 
<seealso>
 
<seealso>
<see>NC.Add</see>
+
<see>ApCoCoA-1:Use|Use</see>
<see>NC.GB</see>
+
<see>ApCoCoA-1:NC.SetOrdering|NC.SetOrdering</see>
<see>NC.IsGB</see>
+
<see>ApCoCoA-1:Introduction to CoCoAServer|Introduction to CoCoAServer</see>
<see>NC.LT</see>
 
<see>NC.LTIdeal</see>
 
<see>NC.MinimalPolymonial</see>
 
<see>NC.Multiply</see>
 
<see>NC.NR</see>
 
<see>NC.SetFp</see>
 
<see>NC.SetOrdering</see>
 
<see>NC.SetRelations</see>
 
<see>NC.SetRules</see>
 
<see>NC.SetX</see>
 
<see>NC.Subtract</see>
 
<see>NC.UnsetFp</see>
 
<see>NC.UnsetOrdering</see>
 
<see>NC.UnsetRelations</see>
 
<see>NC.UnsetRules</see>
 
<see>NC.UnsetX</see>
 
<see>Gbmr.MRSubtract</see>
 
<see>Gbmr.MRMultiply</see>
 
<see>Gbmr.MRBP</see>
 
<see>Gbmr.MRIntersection</see>
 
<see>Gbmr.MRKernelOfHomomorphism</see>
 
<see>Gbmr.MRMinimalPolynomials</see>
 
<see>Introduction to CoCoAServer</see>
 
 
</seealso>
 
</seealso>
 
<types>
 
<types>
 
<type>apcocoaserver</type>
 
<type>apcocoaserver</type>
<type>groebner</type>
+
<type>polynomial</type>
 +
<type>non_commutative</type>
 
</types>
 
</types>
 +
<key>ncpoly.LC</key>
 
<key>NC.LC</key>
 
<key>NC.LC</key>
 
<key>LC</key>
 
<key>LC</key>
<wiki-category>Package_gbmr</wiki-category>
+
<wiki-category>ApCoCoA-1:Package_ncpoly</wiki-category>
 
</command>
 
</command>

Latest revision as of 13:34, 29 October 2020

This article is about a function from ApCoCoA-1.

NC.LC

Leading coefficient of a non-zero polynomial in a non-commutative polynomial ring.

Syntax

NC.LC(F:LIST):INT or RAT

Description

Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.

Please set non-commutative polynomial ring (via the command Use) and word ordering (via the function NC.SetOrdering) before calling this function. The default word ordering is the length-lexicographic ordering ("LLEX"). For more information, please check the relevant commands and functions.

  • @param F: a non-zero non-commutative polynomial. Each polynomial is represented as a LIST of LISTs, and each element in every inner LIST involves only one indeterminate or none (a constant). For example, the polynomial f=2x[2]y[1]x[2]^2-9y[2]x[1]^2x[2]^3+5 is represented as F:=[[2x[1],y[1],x[2]^2], [-9y[2],x[1]^2,x[2]^3], [5]]. The zero polynomial 0 is represented as the empty LIST [].

  • @return: an INT or a RAT, whhich is the leading coefficient of F with respect to the current word ordering.

Example

USE QQ[x[1..2]];
F:= [[x[1]^2], [2x[1],x[2]], [3x[2],x[1]],[4x[2]^2]]; -- x[1]^2+2x[1]x[2]+3x[2]x[1]+4x[2]^2
NC.SetOrdering("LLEX");
NC.LC(F);

[1]
-------------------------------
NC.SetOrdering("LRLEX");
NC.LC(F);

[4]
-------------------------------
NC.SetOrdering("ELIM");
NC.LC(F);

[1]
-------------------------------
NC.SetOrdering("DEGRLEX");
NC.LC(F);

[1]
-------------------------------

See also

Use

NC.SetOrdering

Introduction to CoCoAServer