Difference between revisions of "ApCoCoA-1:LinBox.Solve"
m (replaced <quotes> tag by real quotes) |
|||
(7 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
+ | {{Version|1}} | ||
<command> | <command> | ||
<title>LinBox.Solve</title> | <title>LinBox.Solve</title> | ||
− | <short_description> | + | <short_description>Solves a system of linear equations.</short_description> |
<syntax> | <syntax> | ||
Line 10: | Line 11: | ||
<em>Please note:</em> The function(s) explained on this page is/are using the <em>ApCoCoAServer</em>. You will have to start the ApCoCoAServer in order to use it/them. | <em>Please note:</em> The function(s) explained on this page is/are using the <em>ApCoCoAServer</em>. You will have to start the ApCoCoAServer in order to use it/them. | ||
<par/> | <par/> | ||
− | Let <tt>M</tt> and <tt>B</tt> be matrices defined over the ring of integers, a finite field or the field of rationals. This function tries to solve the linear equation system <tt>M*X = B</tt> by using the ApCoCoAServer supported by the LinBox library. If your base ring is the ring of integers or a finite field, you can pass <tt>Wiedemann</tt> as <tt>METHOD</tt> to let the ApCoCoAServer compute the solution by using the LinBox Wiedemann implementation. If you pass <tt>BlasElim</tt> instead in this case, the solution will be computed by using the LinBox BLAS elimination implementation. If you omit the parameter <tt>METHOD</tt>, <tt>BlasElim</tt> will be used as default value where applicable. Please note | + | Let <tt>M</tt> and <tt>B</tt> be matrices defined over the ring of integers, a finite field or the field of rationals. This function tries to solve the linear equation system <tt>M*X = B</tt> by using the ApCoCoAServer supported by the LinBox library. If your base ring is the ring of integers or a finite field, you can pass <tt>Wiedemann</tt> as <tt>METHOD</tt> to let the ApCoCoAServer compute the solution by using the LinBox Wiedemann implementation. If you pass <tt>BlasElim</tt> instead in this case, the solution will be computed by using the LinBox BLAS elimination implementation. If you omit the parameter <tt>METHOD</tt>, <tt>BlasElim</tt> will be used as default value where applicable. |
+ | <par/> | ||
+ | <em>Please note:</em> The parameter <tt>METHOD</tt> will be ignored if your base ring is the field of rationals, i.e. in this case it is always the LinBox rational solver implementation that will be used for computing a solution. | ||
<par/> | <par/> | ||
The return value will be a solution vector of the linear equation system or an empty matrix if no solution has been found. | The return value will be a solution vector of the linear equation system or an empty matrix if no solution has been found. | ||
<itemize> | <itemize> | ||
− | <item>@param <em>M</em> A matrix with components either of type INT, ZMOD or RAT.</item> | + | <item>@param <em>M</em> A matrix with components either of type <tt>INT</tt>, <tt>ZMOD</tt> or <tt>RAT</tt>.</item> |
− | <item>@param <em>B</em> A matrix with components either of type | + | <item>@param <em>B</em> A matrix with components either of type <tt>INT</tt>, <tt>ZMOD</tt> or <tt>RAT</tt>.</item> |
− | + | <item>@return A matrix <tt>X</tt> representing a solution vector of the linear equation system <tt>M*X = B</tt> if a solution exists or the empty matrix otherwise.</item> | |
− | <item>@return A matrix X representing a solution vector of the linear equation system M*X = B if a solution exists or the empty matrix otherwise.</item> | + | </itemize> |
+ | The following parameter is optional. | ||
+ | <itemize> | ||
+ | <item>@param <em>METHOD</em> A string specifying the solution method to use. Available methods are "Wiedemann" and "BlasElim". Please read the detailed description about this parameter, too.</item> | ||
</itemize> | </itemize> | ||
<example> | <example> | ||
Line 45: | Line 51: | ||
</description> | </description> | ||
− | <see>Introduction to CoCoAServer</see> | + | <see>ApCoCoA-1:Introduction to CoCoAServer|Introduction to CoCoAServer</see> |
− | <see>IML.Solve</see> | + | <see>ApCoCoA-1:IML.Solve|IML.Solve</see> |
− | <see>LinKer</see> | + | <see>ApCoCoA-1:LinAlg.Solve|LinAlg.Solve</see> |
+ | <see>ApCoCoA-1:LinKer|LinKer</see> | ||
<types> | <types> | ||
<type>matrix</type> | <type>matrix</type> | ||
Line 57: | Line 64: | ||
<key>solve linear equation system</key> | <key>solve linear equation system</key> | ||
<key>solve linear equation</key> | <key>solve linear equation</key> | ||
− | <wiki-category>Package_linbox</wiki-category> | + | <wiki-category>ApCoCoA-1:Package_linbox</wiki-category> |
</command> | </command> |
Latest revision as of 13:33, 29 October 2020
This article is about a function from ApCoCoA-1. |
LinBox.Solve
Solves a system of linear equations.
Syntax
LinBox.Solve(M:MAT, B:MAT):MAT LinBox.Solve(M:MAT, B:MAT, METHOD:STRING):MAT
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.
Let M and B be matrices defined over the ring of integers, a finite field or the field of rationals. This function tries to solve the linear equation system M*X = B by using the ApCoCoAServer supported by the LinBox library. If your base ring is the ring of integers or a finite field, you can pass Wiedemann as METHOD to let the ApCoCoAServer compute the solution by using the LinBox Wiedemann implementation. If you pass BlasElim instead in this case, the solution will be computed by using the LinBox BLAS elimination implementation. If you omit the parameter METHOD, BlasElim will be used as default value where applicable.
Please note: The parameter METHOD will be ignored if your base ring is the field of rationals, i.e. in this case it is always the LinBox rational solver implementation that will be used for computing a solution.
The return value will be a solution vector of the linear equation system or an empty matrix if no solution has been found.
@param M A matrix with components either of type INT, ZMOD or RAT.
@param B A matrix with components either of type INT, ZMOD or RAT.
@return A matrix X representing a solution vector of the linear equation system M*X = B if a solution exists or the empty matrix otherwise.
The following parameter is optional.
@param METHOD A string specifying the solution method to use. Available methods are "Wiedemann" and "BlasElim". Please read the detailed description about this parameter, too.
Example
Use ZZ/(19)[x]; M := BringIn(Mat([[1,3,4], [0,2,1]])); B := BringIn(Mat([[1], [2]])); LinBox.Solve(M, B); ------------------------------- Mat([ [-2 % 19], [1 % 19], [0 % 19] ]) -------------------------------
Example
Use QQ[x]; M := Mat([ [1,3,4], [0,2,1], [1,3,4] ]); B := Mat([ [1], [2], [0] ]); LinBox.Solve(M, B); ------------------------------- Mat([ [ ] ]) -------------------------------