Difference between revisions of "ApCoCoA-1:DA.Sep"
From ApCoCoAWiki
(Corrected example.) |
m (replaced <quotes> tag by real quotes) |
||
(5 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
+ | {{Version|1}} | ||
<command> | <command> | ||
<title>DA.Sep</title> | <title>DA.Sep</title> | ||
Line 6: | Line 7: | ||
</syntax> | </syntax> | ||
<description> | <description> | ||
− | DA.Sep returns the separand of polynomial F wrt. the current differential term ordering, or the hereby induced ranking, respectively. The seperand of F is just the initial of the derivative of F. | + | <ref>ApCoCoA-1:DA.Sep|DA.Sep</ref> returns the separand of polynomial <tt>F</tt> wrt. the current differential term ordering, or the hereby induced ranking, respectively. The seperand of <tt>F</tt> is just the initial of the derivative of <tt>F</tt>. |
<itemize> | <itemize> | ||
<item>@param <em>F</em> A differential polynomial.</item> | <item>@param <em>F</em> A differential polynomial.</item> | ||
− | <item>@return The seperand of F wrt. to the current differential term ordering.</item> | + | <item>@return The seperand of <tt>F</tt> wrt. to the current differential term ordering.</item> |
</itemize> | </itemize> | ||
<example> | <example> | ||
Use QQ[x[1..2,0..20]]; | Use QQ[x[1..2,0..20]]; | ||
− | Use QQ[x[1..2,0..20]], Ord(DA.DiffTO( | + | Use QQ[x[1..2,0..20]], Ord(DA.DiffTO("Lex")); |
F:=x[1,2]^3x[2,2]^2 + x[1,1]^3x[2,2]^2 + 1/4x[1,2]; | F:=x[1,2]^3x[2,2]^2 + x[1,1]^3x[2,2]^2 + 1/4x[1,2]; | ||
Line 27: | Line 28: | ||
2x[1,2]^3x[2,2] + 2x[1,1]^3x[2,2] | 2x[1,2]^3x[2,2] + 2x[1,1]^3x[2,2] | ||
------------------------------- | ------------------------------- | ||
− | |||
− | |||
</example> | </example> | ||
</description> | </description> | ||
Line 35: | Line 34: | ||
</types> | </types> | ||
− | <see>DA.DiffTO</see> | + | <see>ApCoCoA-1:DA.DiffTO|DA.DiffTO</see> |
− | <see>DA.Differentiate</see> | + | <see>ApCoCoA-1:DA.Differentiate|DA.Differentiate</see> |
− | <see>DA.Initial</see> | + | <see>ApCoCoA-1:DA.Initial|DA.Initial</see> |
<key>Sep</key> | <key>Sep</key> | ||
Line 43: | Line 42: | ||
<key>diffalg.Sep</key> | <key>diffalg.Sep</key> | ||
<key>differential.Sep</key> | <key>differential.Sep</key> | ||
− | <wiki-category>Package_diffalg</wiki-category> | + | <wiki-category>ApCoCoA-1:Package_diffalg</wiki-category> |
</command> | </command> |
Latest revision as of 13:30, 29 October 2020
This article is about a function from ApCoCoA-1. |
DA.Sep
Computes the separand of a differential polynomial.
Syntax
DA.Sep(F:POLY):POLY
Description
DA.Sep returns the separand of polynomial F wrt. the current differential term ordering, or the hereby induced ranking, respectively. The seperand of F is just the initial of the derivative of F.
@param F A differential polynomial.
@return The seperand of F wrt. to the current differential term ordering.
Example
Use QQ[x[1..2,0..20]]; Use QQ[x[1..2,0..20]], Ord(DA.DiffTO("Lex")); F:=x[1,2]^3x[2,2]^2 + x[1,1]^3x[2,2]^2 + 1/4x[1,2]; G:=DA.Differentiate(F); DA.Initial(G); ------------------------------- 2x[1,2]^3x[2,2] + 2x[1,1]^3x[2,2] ------------------------------- DA.Sep(F); ------------------------------- 2x[1,2]^3x[2,2] + 2x[1,1]^3x[2,2] -------------------------------