Difference between revisions of "ApCoCoA-1:DA.Initial"
From ApCoCoAWiki
m (Bot: Category moved) |
m (replaced <quotes> tag by real quotes) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
+ | {{Version|1}} | ||
<command> | <command> | ||
<title>DA.Initial</title> | <title>DA.Initial</title> | ||
Line 6: | Line 7: | ||
</syntax> | </syntax> | ||
<description> | <description> | ||
− | <ref>DA.Initial</ref> returns the initial of polynomial <tt>F</tt> wrt. the current differential term ordering, or the hereby induced ranking, respectively. | + | <ref>ApCoCoA-1:DA.Initial|DA.Initial</ref> returns the initial of polynomial <tt>F</tt> wrt. the current differential term ordering, or the hereby induced ranking, respectively. |
<itemize> | <itemize> | ||
<item>@param <em>F</em> A differential polynomial.</item> | <item>@param <em>F</em> A differential polynomial.</item> | ||
Line 13: | Line 14: | ||
<example> | <example> | ||
Use QQ[x[1..2,0..20]]; | Use QQ[x[1..2,0..20]]; | ||
− | Use QQ[x[1..2,0..20]], Ord(DA.DiffTO( | + | Use QQ[x[1..2,0..20]], Ord(DA.DiffTO("Lex")); |
F:=x[1,2]^3x[2,2]^2 + x[1,1]^3x[2,2]^2 + 1/4x[1,2]; | F:=x[1,2]^3x[2,2]^2 + x[1,1]^3x[2,2]^2 + 1/4x[1,2]; | ||
Line 34: | Line 35: | ||
<type>polynomial</type> | <type>polynomial</type> | ||
</types> | </types> | ||
− | <see>DA.LD</see> | + | <see>ApCoCoA-1:DA.LD|DA.LD</see> |
− | <see>DA.LPot</see> | + | <see>ApCoCoA-1:DA.LPot|DA.LPot</see> |
− | <see>DA.DiffTO</see> | + | <see>ApCoCoA-1:DA.DiffTO|DA.DiffTO</see> |
<key>Initial</key> | <key>Initial</key> |
Latest revision as of 13:29, 29 October 2020
This article is about a function from ApCoCoA-1. |
DA.Initial
Computes the initial of a differential polynomial.
Syntax
DA.Initial(F:POLY):POLY
Description
DA.Initial returns the initial of polynomial F wrt. the current differential term ordering, or the hereby induced ranking, respectively.
@param F A differential polynomial.
@return The initial of F.
Example
Use QQ[x[1..2,0..20]]; Use QQ[x[1..2,0..20]], Ord(DA.DiffTO("Lex")); F:=x[1,2]^3x[2,2]^2 + x[1,1]^3x[2,2]^2 + 1/4x[1,2]; DA.LD(F); ------------------------------- x[2,2] ------------------------------- DA.LPot(F); ------------------------------- x[2,2]^2 ------------------------------- DA.Initial(F); ------------------------------- x[1,2]^3 + x[1,1]^3 -------------------------------