Difference between revisions of "ApCoCoA-1:DA.DiffGB"
From ApCoCoAWiki
m (replaced <quotes> tag by real quotes) |
|||
(3 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
+ | {{Version|1}} | ||
<command> | <command> | ||
<title>DA.DiffGB</title> | <title>DA.DiffGB</title> | ||
Line 12: | Line 13: | ||
</itemize> | </itemize> | ||
<example>Use QQ[x[1..1,0..20]]; | <example>Use QQ[x[1..1,0..20]]; | ||
− | Use QQ[x[1..1,0..20]], Ord(DA.DiffTO( | + | Use QQ[x[1..1,0..20]], Ord(DA.DiffTO("Lex")); |
DA.DiffGB([x[1,1]^4+x[1,0]]); | DA.DiffGB([x[1,1]^4+x[1,0]]); | ||
------------------------------- | ------------------------------- | ||
Line 29: | Line 30: | ||
<key>diffalg.DiffGB</key> | <key>diffalg.DiffGB</key> | ||
<key>differential.DiffGB</key> | <key>differential.DiffGB</key> | ||
− | <wiki-category>Package_diffalg</wiki-category> | + | <wiki-category>ApCoCoA-1:Package_diffalg</wiki-category> |
</command> | </command> |
Latest revision as of 13:29, 29 October 2020
This article is about a function from ApCoCoA-1. |
DA.DiffGB
Computes a differential Groebner basis.
Syntax
DA.DiffGB(I:IDEAL):LIST
Description
Returns a differential Groebner basis of the ideal I which is differentially generated by a set of differential polynomials wrt. the current differential term ordering. This function only terminates if the ideal I is zero dimensional and has a finite differential Groebner basis.
@param I A differential ideal.
@return If terminating, a list of differential polynomials that form a differential Groebner basis of I.
Example
Use QQ[x[1..1,0..20]]; Use QQ[x[1..1,0..20]], Ord(DA.DiffTO("Lex")); DA.DiffGB([x[1,1]^4+x[1,0]]); ------------------------------- [x[1,3] - 8x[1,1]x[1,2]^3, x[1,1]^2x[1,2]^2 + 1/4x[1,2], x[1,0]x[1,2] - 1/4x[1,1]^2, x[1,1]^4 + x[1,0]] -------------------------------