Difference between revisions of "ApCoCoA-1:DA.DiffGB"
From ApCoCoAWiki
S schuster (talk | contribs) (New page: <command> <title>diffalg.DiffGB</title> <short_description>Compute a differential Groebner basis.</short_description> <syntax> $diffalg.DiffGB(I:IDEAL):LIST </syntax> <description>...) |
m (replaced <quotes> tag by real quotes) |
||
(10 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
+ | {{Version|1}} | ||
<command> | <command> | ||
− | <title> | + | <title>DA.DiffGB</title> |
− | <short_description> | + | <short_description>Computes a differential Groebner basis.</short_description> |
<syntax> | <syntax> | ||
− | + | DA.DiffGB(I:IDEAL):LIST | |
</syntax> | </syntax> | ||
<description> | <description> | ||
− | Returns a differential Groebner basis of the ideal I which is differentially generated by | + | Returns a differential Groebner basis of the ideal <tt>I</tt> which is differentially generated by a set of differential polynomials wrt. the current differential term ordering. This function only terminates if the ideal <tt>I</tt> is zero dimensional and has a finite differential Groebner basis. |
− | <example>Use | + | <itemize> |
− | Use | + | <item>@param <em>I</em> A differential ideal.</item> |
− | + | <item>@return If terminating, a list of differential polynomials that form a differential Groebner basis of <tt>I</tt>.</item> | |
+ | </itemize> | ||
+ | <example>Use QQ[x[1..1,0..20]]; | ||
+ | Use QQ[x[1..1,0..20]], Ord(DA.DiffTO("Lex")); | ||
+ | DA.DiffGB([x[1,1]^4+x[1,0]]); | ||
------------------------------- | ------------------------------- | ||
[x[1,3] - 8x[1,1]x[1,2]^3, x[1,1]^2x[1,2]^2 + 1/4x[1,2], x[1,0]x[1,2] - 1/4x[1,1]^2, x[1,1]^4 + x[1,0]] | [x[1,3] - 8x[1,1]x[1,2]^3, x[1,1]^2x[1,2]^2 + 1/4x[1,2], x[1,0]x[1,2] - 1/4x[1,1]^2, x[1,1]^4 + x[1,0]] | ||
Line 15: | Line 20: | ||
</example> | </example> | ||
</description> | </description> | ||
− | <wiki-category>Package_diffalg</wiki-category> | + | <types> |
+ | <type>polynomial</type> | ||
+ | <type>ideal</type> | ||
+ | <type>groebner</type> | ||
+ | </types> | ||
+ | |||
+ | <key>DiffGB</key> | ||
+ | <key>DA.DiffGB</key> | ||
+ | <key>diffalg.DiffGB</key> | ||
+ | <key>differential.DiffGB</key> | ||
+ | <wiki-category>ApCoCoA-1:Package_diffalg</wiki-category> | ||
</command> | </command> |
Latest revision as of 13:29, 29 October 2020
This article is about a function from ApCoCoA-1. |
DA.DiffGB
Computes a differential Groebner basis.
Syntax
DA.DiffGB(I:IDEAL):LIST
Description
Returns a differential Groebner basis of the ideal I which is differentially generated by a set of differential polynomials wrt. the current differential term ordering. This function only terminates if the ideal I is zero dimensional and has a finite differential Groebner basis.
@param I A differential ideal.
@return If terminating, a list of differential polynomials that form a differential Groebner basis of I.
Example
Use QQ[x[1..1,0..20]]; Use QQ[x[1..1,0..20]], Ord(DA.DiffTO("Lex")); DA.DiffGB([x[1,1]^4+x[1,0]]); ------------------------------- [x[1,3] - 8x[1,1]x[1,2]^3, x[1,1]^2x[1,2]^2 + 1/4x[1,2], x[1,0]x[1,2] - 1/4x[1,1]^2, x[1,1]^4 + x[1,0]] -------------------------------