Difference between revisions of "ApCoCoA-1:DA.DiffGB"

From ApCoCoAWiki
m (Bot: Category moved)
m (replaced <quotes> tag by real quotes)
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
 +
{{Version|1}}
 
<command>
 
<command>
 
     <title>DA.DiffGB</title>
 
     <title>DA.DiffGB</title>
Line 12: Line 13:
 
</itemize>
 
</itemize>
 
<example>Use QQ[x[1..1,0..20]];
 
<example>Use QQ[x[1..1,0..20]];
Use QQ[x[1..1,0..20]], Ord(DA.DiffTO(<quotes>Lex</quotes>));
+
Use QQ[x[1..1,0..20]], Ord(DA.DiffTO("Lex"));
 
DA.DiffGB([x[1,1]^4+x[1,0]]);
 
DA.DiffGB([x[1,1]^4+x[1,0]]);
 
-------------------------------
 
-------------------------------

Latest revision as of 13:29, 29 October 2020

This article is about a function from ApCoCoA-1.

DA.DiffGB

Computes a differential Groebner basis.

Syntax

DA.DiffGB(I:IDEAL):LIST

Description

Returns a differential Groebner basis of the ideal I which is differentially generated by a set of differential polynomials wrt. the current differential term ordering. This function only terminates if the ideal I is zero dimensional and has a finite differential Groebner basis.

  • @param I A differential ideal.

  • @return If terminating, a list of differential polynomials that form a differential Groebner basis of I.

Example

Use QQ[x[1..1,0..20]];
Use QQ[x[1..1,0..20]], Ord(DA.DiffTO("Lex"));
DA.DiffGB([x[1,1]^4+x[1,0]]);
-------------------------------
[x[1,3] - 8x[1,1]x[1,2]^3, x[1,1]^2x[1,2]^2 + 1/4x[1,2], x[1,0]x[1,2] - 1/4x[1,1]^2, x[1,1]^4 + x[1,0]]
-------------------------------