Difference between revisions of "ApCoCoA-1:Bertini.BSolve"

From ApCoCoAWiki
m (replaced <quotes> tag by real quotes)
 
(22 intermediate revisions by 4 users not shown)
Line 1: Line 1:
 +
{{Version|1}}
 
<command>
 
<command>
 
<title>Bertini.BSolve</title>
 
<title>Bertini.BSolve</title>
<short_description>Solves zero dimensional homogeneous or non-homogeneous polynomial system with default configurations.</short_description>
+
<short_description>Solves a zero dimensional homogeneous or non-homogeneous polynomial system of equations with default configurations.</short_description>
 
<syntax>
 
<syntax>
Bertini.BSolve(M:LIST, SysTyp:STRING)
+
Bertini.BSolve(P:LIST, SysTyp:STRING)
 
</syntax>
 
</syntax>
 
<description>
 
<description>
 
<em>Please note:</em> The function(s) explained on this page is/are using the <em>ApCoCoAServer</em>. You will have to start the ApCoCoAServer in order to use it/them.
 
<em>Please note:</em> The function(s) explained on this page is/are using the <em>ApCoCoAServer</em>. You will have to start the ApCoCoAServer in order to use it/them.
 +
<par/>
 +
This function uses total degree homotopy to find all isolated solutions of a zero dimensional system of polynomial equations. It uses default configurations provided by Bertini. The system of polynomials may be homogeneous or nonhomogeneous. For homogeneous polynomial system the output will be the list of all real solutions and for nonhomogeneous system the output will be the list of all finite solutions.
 +
<itemize>
 +
<item>@param <em>P</em>: List of polynomials of the given system.</item>
 +
<item>@param <em>SysTyp</em>: Type of polynomials in the list <tt>P</tt>. Homogeneous (<tt>"hom"</tt>) or nonhomogeneous (<tt>"Nhom"</tt>).</item>
 +
<item>@return A list of lists containing the finite (or real) solutions of the system P.</item>
  
<itemize>
 
<item>@param <em>M</em>: List of polynomials in the system.</item>
 
<item>@param <em>SysTyp</em>: Type of polynomials in the system. Homogeneous (<tt>hom</tt>) or nonhomogeneous (<tt>Nhom</tt>).</item>
 
 
</itemize>
 
</itemize>
  
 
<example>
 
<example>
-- Zero Dimensional Non-Homogeneous Solving
+
-- An example of zero dimensional Non-Homogeneous Solving.
 
-- We want to solve zero dimensional non-homogeneous system x^2+y^2-5=0, xy-2=0.  
 
-- We want to solve zero dimensional non-homogeneous system x^2+y^2-5=0, xy-2=0.  
  
Use S ::= QQ[x,y];             --  Define appropriate ring
+
Use S ::= QQ[x,y];            
M := [x^2+y^2-5, xy-2];
+
P := [x^2+y^2-5, xy-2];
SysTyp := <quotes>Nhom</quotes>;
+
SysTyp := "Nhom";
  
 
-- Then we compute the solution with
 
-- Then we compute the solution with
Bertini.BSolve(M,SysTyp);
+
Bertini.BSolve(P,SysTyp);
  
-- And we achieve a list of lists containing all finite solutions:
+
-- And we achieve a list of lists containing all finite solutions.
 
----------------------------------------
 
----------------------------------------
[[Vector(400000000000003/200000000000000, -3416759775755413/500000000000000000000000000000),  
+
[
Vector(9999999999999927/10000  000000000000, 8966048861359829/1000000000000000000000000000000)],
+
[
[Vector(2499999999999963/2500000000000000, 5007041073746  771/100000000000000000000000000000),
+
Vector(400000000000003/200000000000000, -3416759775755413/500000000000000000000000000000),  
Vector(249999999999999/125000000000000, -1089183184148021/250000000000000000000000000  00)],
+
Vector(9999999999999927/10000000000000000, 8966048861359829/1000000000000000000000000000000)
[Vector(-9999999999999969/10000000000000000, 191792591213411/125000000000000000000000000000),
+
],
Vector(-19999999999999  99/1000000000000000, 2443331461729629/2500000000000000000000000000000)],
+
[
[Vector(-250000000000001/125000000000000, 4347064  850996171/1000000000000000000000000000000),
+
Vector(2499999999999963/2500000000000000, 5007041073746771/100000000000000000000000000000),
Vector(-9999999999999943/10000000000000000, -2154842536286333/5000000000000000  00000000000000)]]
+
Vector(249999999999999/125000000000000, -1089183184148021/25000000000000000000000000000)
 +
],
 +
[
 +
Vector(-9999999999999969/10000000000000000, 191792591213411/125000000000000000000000000000),
 +
Vector(-1999999999999999/1000000000000000, 2443331461729629/2500000000000000000000000000000)
 +
],
 +
[
 +
Vector(-250000000000001/125000000000000, 4347064  850996171/1000000000000000000000000000000),
 +
Vector(-9999999999999943/10000000000000000, -2154842536286333/500000000000000000000000000000)
 +
]
 +
]
 +
 
 +
--The elements of lists are vectors. Each vector represents a complex number. For example Vector(5000/1000,-4150/1000)
 +
--represents the complex number 5000/1000-4150/1000i.
 +
--For Bertini output files please refer to ApCoCoA directory/Bertini.
 
</example>
 
</example>
 
<example>
 
<example>
-- Zero Dimensional Homogeneous Solving
+
-- An example of zero dimensional Homogeneous Solving
 
-- We want to solve zero dimensional homogeneous system x^2-z^2=0, xy-z^2=0.
 
-- We want to solve zero dimensional homogeneous system x^2-z^2=0, xy-z^2=0.
  
Use S ::= QQ[x,y,z];             --  Define appropriate ring
+
Use S ::= QQ[x,y,z];          
 
M := [x^2-z^2, xy-z^2];
 
M := [x^2-z^2, xy-z^2];
SysTyp := <quotes>hom</quotes>;
+
SysTyp := "hom";
  
 
-- Then we compute the solution with
 
-- Then we compute the solution with
$Bertini.BSolve(M,SysTyp);
+
Bertini.BSolve(M,SysTyp);
  
-- And we achieve a list of lists containing all real finite solutions:
+
-- And we achieve a list of lists containing all real solutions.
 
----------------------------------------
 
----------------------------------------
[[2190685167348543/5000000000000000, 2190685167348543/5000000000000000, 2190685167348543/5000000000000000],
+
[
[1237092982347  763/5000000000000000, 1237092982347763/5000000000000000, -1237092982347763/5000000000000000],
+
[2190685167348543/5000000000000000, 2190685167348543/5000000000000000, 2190685167348543/5000000000000000],
[3235177805819999/1000000000  00000000000000000000, 9932123317905381/10000000000000000,  
+
[1237092982347763/5000000000000000, 1237092982347763/5000000000000000, -1237092982347763/5000000000000000],
621807549382663/5000000000000000000000000000], [30067693529  85381/100000000000000000000000000000,
+
[3235177805819999/100000000000000000000000000000, 9932123317905381/10000000000000000,621807549382663/5000000000000000000000000000],  
1241515414738241/1250000000000000, 555981798431817/5000000000000000000000000000]]
+
[3006769352985381/100000000000000000000000000000,1241515414738241/1250000000000000, 555981798431817/5000000000000000000000000000]
 +
]
  
 +
--These are the real solutions of the system
 +
--For Bertini output files please refer to ApCoCoA directory/Bertini.
 
------------------------------------
 
------------------------------------
 
</example>
 
</example>
Line 64: Line 85:
  
 
<seealso>
 
<seealso>
  <see>Introduction to CoCoAServer</see>
+
  <see>ApCoCoA-1:Introduction to CoCoAServer|Introduction to CoCoAServer</see>
  <see>Bertini.BCMSolve</see>
+
  <see>ApCoCoA-1:Bertini.BPCSolve|Bertini.BPCSolve</see>
  <see>Bertini.BCSolve</see>
+
  <see>ApCoCoA-1:Bertini.BZCSolve|Bertini.BZCSolve</see>
  <see>Bertini.BMSolve</see>
+
  <see>ApCoCoA-1:Bertini.BMSolve|Bertini.BMSolve</see>
  <see>Bertini.BUHSolve</see>
+
  <see>ApCoCoA-1:Bertini.BUHSolve|Bertini.BUHSolve</see>
 
</seealso>
 
</seealso>
  
Line 74: Line 95:
 
<key>bertini.bsolve</key>
 
<key>bertini.bsolve</key>
 
<key>solve zero dimensional polynomial system</key>
 
<key>solve zero dimensional polynomial system</key>
<wiki-category>Package_bertini</wiki-category>
+
<wiki-category>ApCoCoA-1:Package_bertini</wiki-category>
 
</command>
 
</command>

Latest revision as of 13:28, 29 October 2020

This article is about a function from ApCoCoA-1.

Bertini.BSolve

Solves a zero dimensional homogeneous or non-homogeneous polynomial system of equations with default configurations.

Syntax

Bertini.BSolve(P:LIST, SysTyp:STRING)

Description

Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.

This function uses total degree homotopy to find all isolated solutions of a zero dimensional system of polynomial equations. It uses default configurations provided by Bertini. The system of polynomials may be homogeneous or nonhomogeneous. For homogeneous polynomial system the output will be the list of all real solutions and for nonhomogeneous system the output will be the list of all finite solutions.

  • @param P: List of polynomials of the given system.

  • @param SysTyp: Type of polynomials in the list P. Homogeneous ("hom") or nonhomogeneous ("Nhom").

  • @return A list of lists containing the finite (or real) solutions of the system P.


Example

-- An example of zero dimensional Non-Homogeneous Solving.
-- We want to solve zero dimensional non-homogeneous system x^2+y^2-5=0, xy-2=0. 

Use S ::= QQ[x,y];              
P := [x^2+y^2-5, xy-2];
SysTyp := "Nhom";

-- Then we compute the solution with
Bertini.BSolve(P,SysTyp);

-- And we achieve a list of lists containing all finite solutions.
----------------------------------------
[
[
Vector(400000000000003/200000000000000, -3416759775755413/500000000000000000000000000000), 
Vector(9999999999999927/10000000000000000, 8966048861359829/1000000000000000000000000000000)
],
[
Vector(2499999999999963/2500000000000000, 5007041073746771/100000000000000000000000000000),
Vector(249999999999999/125000000000000, -1089183184148021/25000000000000000000000000000)
],
[
Vector(-9999999999999969/10000000000000000, 191792591213411/125000000000000000000000000000),
Vector(-1999999999999999/1000000000000000, 2443331461729629/2500000000000000000000000000000)
],
[
Vector(-250000000000001/125000000000000, 4347064  850996171/1000000000000000000000000000000),
Vector(-9999999999999943/10000000000000000, -2154842536286333/500000000000000000000000000000)
]
]

--The elements of lists are vectors. Each vector represents a complex number. For example Vector(5000/1000,-4150/1000)
--represents the complex number 5000/1000-4150/1000i.
--For Bertini output files please refer to ApCoCoA directory/Bertini.

Example

-- An example of zero dimensional Homogeneous Solving
-- We want to solve zero dimensional homogeneous system x^2-z^2=0, xy-z^2=0.

Use S ::= QQ[x,y,z];            
M := [x^2-z^2, xy-z^2];
SysTyp := "hom";

-- Then we compute the solution with
Bertini.BSolve(M,SysTyp);

-- And we achieve a list of lists containing all real solutions.
----------------------------------------
[
[2190685167348543/5000000000000000, 2190685167348543/5000000000000000, 2190685167348543/5000000000000000],
[1237092982347763/5000000000000000, 1237092982347763/5000000000000000, -1237092982347763/5000000000000000],
[3235177805819999/100000000000000000000000000000, 9932123317905381/10000000000000000,621807549382663/5000000000000000000000000000], 
[3006769352985381/100000000000000000000000000000,1241515414738241/1250000000000000, 555981798431817/5000000000000000000000000000]
]

--These are the real solutions of the system
--For Bertini output files please refer to ApCoCoA directory/Bertini.
------------------------------------



See also

Introduction to CoCoAServer

Bertini.BPCSolve

Bertini.BZCSolve

Bertini.BMSolve

Bertini.BUHSolve