Difference between revisions of "ApCoCoA-1:BB.GenericHomBB"
From ApCoCoAWiki
(Types section update.) |
m (replaced <quotes> tag by real quotes) |
||
(8 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
+ | {{Version|1}} | ||
<command> | <command> | ||
− | + | <title>BB.GenericHomBB</title> | |
− | + | <short_description>Computes a generic homogeneous border basis.</short_description> | |
+ | |||
<syntax> | <syntax> | ||
BB.GenericHomBB(OO:LIST):LIST | BB.GenericHomBB(OO:LIST):LIST | ||
</syntax> | </syntax> | ||
− | + | <description> | |
− | Computes the | + | Computes the "generic" homogeneous border basis w.r.t. an order ideal <tt>OO</tt>. The output is a list of <tt>POLY</tt> in a "universal family ring" <tt>UF</tt> where <tt>UF=K[x_1,..,x_n,c_{ij}]</tt>. |
<itemize> | <itemize> | ||
− | <item>@param <em>OO</em> A list of terms representing an order ideal.</item> | + | <item>@param <em>OO</em> A list of terms representing an order ideal. The second element has to be of type <tt>POLY</tt>.</item> |
− | <item>@return A list of generic homogeneous border basis polynomials w.r.t. to an order ideal OO | + | <item>@return A list of generic homogeneous border basis polynomials w.r.t. to an order ideal <tt>OO</tt>.</item> |
</itemize> | </itemize> | ||
− | + | </description> | |
− | <types> | + | <types> |
− | <type> | + | <type>borderbasis</type> |
− | </types> | + | </types> |
− | + | <key>GenericHomBB</key> | |
− | + | <key>BB.GenericHomBB</key> | |
− | + | <key>borderbasis.GenericHomBB</key> | |
− | + | <wiki-category>ApCoCoA-1:Package_borderbasis</wiki-category> | |
</command> | </command> |
Latest revision as of 13:27, 29 October 2020
This article is about a function from ApCoCoA-1. |
BB.GenericHomBB
Computes a generic homogeneous border basis.
Syntax
BB.GenericHomBB(OO:LIST):LIST
Description
Computes the "generic" homogeneous border basis w.r.t. an order ideal OO. The output is a list of POLY in a "universal family ring" UF where UF=K[x_1,..,x_n,c_{ij}].
@param OO A list of terms representing an order ideal. The second element has to be of type POLY.
@return A list of generic homogeneous border basis polynomials w.r.t. to an order ideal OO.