Difference between revisions of "ApCoCoA-1:BB.GenericBB"

From ApCoCoAWiki
m (replaced <quotes> tag by real quotes)
 
(4 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 +
{{Version|1}}
 
<command>
 
<command>
 
   <title>BB.GenericBB</title>
 
   <title>BB.GenericBB</title>
Line 7: Line 8:
 
</syntax>
 
</syntax>
 
   <description>
 
   <description>
Computes the <quotes>generic</quotes> border basis w.r.t. an order ideal OO i.e. the polynomials g_j = b_j - \sum_i c_{ij} * t_i. The input is a list of terms OO (2nd element of type POLY). The output is a list of POLY in a <quotes>universal family ring</quotes> UF where UF=K[x_1,..,x_n,c_{ij}].
+
Computes the "generic" border basis w.r.t. an order ideal <tt>OO</tt> i.e. the polynomials <tt>g_j = b_j - \sum_i c_{ij} * t_i</tt>. The output is a list of <tt>POLY</tt> in a "universal family ring" <tt>UF</tt> where <tt>UF=K[x_1,..,x_n,c_{ij}]</tt>.
 
<itemize>
 
<itemize>
   <item>@param <em>OO</em> A list of terms representing an order ideal.</item>
+
   <item>@param <em>OO</em> A list of terms representing an order ideal. The second element has to be of type <tt>POLY</tt>.</item>
   <item>@return A list of generic border basis polynomials w.r.t. to an order ideal OO. The polynomials will belong to the ring UF=K[x_1,..,x_n,c_{ij}].</item>
+
   <item>@return A list of generic border basis polynomials w.r.t. to an order ideal <tt>OO</tt>. </item>
 
</itemize>
 
</itemize>
 
   </description>
 
   </description>
Line 19: Line 20:
 
   <key>BB.GenericBB</key>
 
   <key>BB.GenericBB</key>
 
   <key>borderbasis.GenericBB</key>
 
   <key>borderbasis.GenericBB</key>
   <wiki-category>Package_borderbasis</wiki-category>
+
   <wiki-category>ApCoCoA-1:Package_borderbasis</wiki-category>
 
</command>
 
</command>

Latest revision as of 13:27, 29 October 2020

This article is about a function from ApCoCoA-1.

BB.GenericBB

Computes a generic border basis.

Syntax

BB.GenericBB(OO:LIST):LIST

Description

Computes the "generic" border basis w.r.t. an order ideal OO i.e. the polynomials g_j = b_j - \sum_i c_{ij} * t_i. The output is a list of POLY in a "universal family ring" UF where UF=K[x_1,..,x_n,c_{ij}].

  • @param OO A list of terms representing an order ideal. The second element has to be of type POLY.

  • @return A list of generic border basis polynomials w.r.t. to an order ideal OO.