Difference between revisions of "Package sagbi/SB.IsInToricRing"

From ApCoCoAWiki
m (replaced quotes by <qoutes> tag)
m (replaced <quotes> tags by real quotes)
 
Line 4: Line 4:
 
   <short_description>This function checks whether a given polynomial is in a toric subalgebra.</short_description>
 
   <short_description>This function checks whether a given polynomial is in a toric subalgebra.</short_description>
 
    
 
    
   <syntax>SB.IsInToricRing(f: RINGELEM, S: TAGGED(<quotes>$apcocoa/sagbi.Subalgebra</quotes>)): BOOL</syntax>
+
   <syntax>SB.IsInToricRing(f: RINGELEM, S: TAGGED("$apcocoa/sagbi.Subalgebra")): BOOL</syntax>
 
   <description>
 
   <description>
 
This function takes a polynomial <tt>f</tt> and a subalgebra <tt>S</tt> generated by a set of terms and checks whether <tt>f</tt> is a toric ring.
 
This function takes a polynomial <tt>f</tt> and a subalgebra <tt>S</tt> generated by a set of terms and checks whether <tt>f</tt> is a toric ring.

Latest revision as of 13:22, 29 October 2020

This article is about a function from ApCoCoA-2.

SB.IsInToricRing

This function checks whether a given polynomial is in a toric subalgebra.

Syntax

SB.IsInToricRing(f: RINGELEM, S: TAGGED("$apcocoa/sagbi.Subalgebra")): BOOL

Description

This function takes a polynomial f and a subalgebra S generated by a set of terms and checks whether f is a toric ring.

  • @param f A polynomial

  • @param S A subalgebra of RingOf(f)

  • @return true if f is an element of S and false otherwise.

Example

Use R ::= QQ[x,y,z];
S := SB.Subalgebra(R,[x^2,x*y,y*z]);
f := x^5*y^3*z^2 + x^4*y^2*z^2;
SB.IsInToricRing(f,S);
-- true

See also

Package sagbi/SB.IsInSubalgebra

Package sagbi/SB.IsInSubalgebra_SAGBI

Package sagbi/SB.IsInSA

Package sagbi/SB.IsInSA_SAGBI