Difference between revisions of "Package sagbi/SB.IsInSA"

From ApCoCoAWiki
(removed indent)
m (replaced <quotes> tags by real quotes)
 
(6 intermediate revisions by one other user not shown)
Line 1: Line 1:
{{Version|2}}
+
{{Version|2|[[ApCoCoA-1:SB.IsInSubalgebra]]}}
 
<command>
 
<command>
 
   <title>SB.IsInSA</title>
 
   <title>SB.IsInSA</title>
 
   <short_description>This function tests whether a polynomial is in a given Subalgebra.</short_description>
 
   <short_description>This function tests whether a polynomial is in a given Subalgebra.</short_description>
 
    
 
    
   <syntax>
+
   <syntax>SB.IsInSA(f: RINGELEM,S: TAGGED("$apcocoa/sagbi.Subalgebra")): BOOL</syntax>
SB.IsInSA(f: RINGELEM,S: TAGGED("$apcocoa/sagbi.Subalgebra")): BOOL
 
  </syntax>
 
 
   <description>
 
   <description>
This function takes a polynomial <em>f</em> and a subalgebra <em>S</em> and tests whether <em>f</em> is an element of <em>S</em> using implicitization.
+
This function takes a polynomial <tt>f</tt> and a subalgebra <tt>S</tt> and tests whether <tt>f</tt> is an element of <tt>S</tt> using implicitization.
 
     <itemize>
 
     <itemize>
       <item>@param <em>f</em> A polynomial </item>
+
       <item>@param <tt>f</tt> A polynomial </item>
       <item>@param <em>S</em> A subalgebra, i.e. of type <em>TAGGED("$apcocoa/sagbi.Subalgebra")</em> </item>
+
       <item>@param <tt>S</tt> A subalgebra, i.e. of type <tt>TAGGED("$apcocoa/sagbi.Subalgebra")</tt> </item>
       <item>@return <em>true</em> if <em>f</em> is an element of <em>S</em> and <em>false</em> if not.</item>
+
       <item>@return <tt>true</tt> if <tt>f</tt> is an element of <tt>S</tt> and <tt>false</tt> if not.</item>
 
     </itemize>
 
     </itemize>
 
   
 
   
Line 19: Line 17:
 
S := SB.Subalgebra(R,[x^2,y+z]);
 
S := SB.Subalgebra(R,[x^2,y+z]);
 
f := x^4 +2*x^3*y +x^2*y^2 +x^2 +2*x*y +y^2;
 
f := x^4 +2*x^3*y +x^2*y^2 +x^2 +2*x*y +y^2;
SB.IsInSA(f,S); -- true
+
SB.IsInSA(f,S); -- true</example>
    </example>
 
 
   </description>
 
   </description>
  
 
   <seealso>
 
   <seealso>
 +
    <see>Package sagbi/SB.Subalgebra</see>
 
     <see>Package sagbi/SB.IsInSA_SAGBI</see>
 
     <see>Package sagbi/SB.IsInSA_SAGBI</see>
 
     <see>Package sagbi/SB.IsInSubalgebra</see>
 
     <see>Package sagbi/SB.IsInSubalgebra</see>
 
     <see>Package sagbi/SB.IsInSubalgebra_SAGBI</see>
 
     <see>Package sagbi/SB.IsInSubalgebra_SAGBI</see>
 +
    <see>Package sagbi/SB.IsInToricRing</see>
 
   </seealso>
 
   </seealso>
  

Latest revision as of 13:22, 29 October 2020

This article is about a function from ApCoCoA-2. If you are looking for the ApCoCoA-1 version of it, see ApCoCoA-1:SB.IsInSubalgebra.

SB.IsInSA

This function tests whether a polynomial is in a given Subalgebra.

Syntax

SB.IsInSA(f: RINGELEM,S: TAGGED("$apcocoa/sagbi.Subalgebra")): BOOL

Description

This function takes a polynomial f and a subalgebra S and tests whether f is an element of S using implicitization.

  • @param f A polynomial

  • @param S A subalgebra, i.e. of type TAGGED("$apcocoa/sagbi.Subalgebra")

  • @return true if f is an element of S and false if not.

Example

Use R ::= QQ[x,y,z];
S := SB.Subalgebra(R,[x^2,y+z]);
f := x^4 +2*x^3*y +x^2*y^2 +x^2 +2*x*y +y^2;
SB.IsInSA(f,S); -- true

See also

Package sagbi/SB.Subalgebra

Package sagbi/SB.IsInSA_SAGBI

Package sagbi/SB.IsInSubalgebra

Package sagbi/SB.IsInSubalgebra_SAGBI

Package sagbi/SB.IsInToricRing