Difference between revisions of "Package sagbi/SB.SAGBI"
From ApCoCoAWiki
Andraschko (talk | contribs) m (changed category) |
Andraschko (talk | contribs) (added version info) |
||
Line 1: | Line 1: | ||
− | {{Version|2|[[ApCoCoA:SB.Sagbi]]}} | + | {{Version|2|[[ApCoCoA-1:SB.Sagbi]] and [[ApCoCoA-1:SB.ReducedSagbi]]}} |
<command> | <command> | ||
Line 16: | Line 16: | ||
<example> | <example> | ||
− | Use QQ[x | + | Use QQ[x,y,z], DegRevLex; |
− | S := SB.SAGBI([x | + | S := SB.SAGBI([x^2 -z^2, x*y +z^2, y^2 -2*z^2]); |
indent(S); | indent(S); | ||
− | ---- | + | -- [ |
− | + | -- y^2 -2*z^2, | |
− | + | -- x*y +z^2, | |
− | x | + | -- x^2 -z^2, |
− | x | + | -- x^2*z^2 +x*y*z^2 +(1/2)*y^2*z^2 +(-1/2)*z^4 |
− | x | + | -- ] |
− | ] | ||
</example> | </example> | ||
</description> | </description> | ||
− | < | + | <seealso> |
− | < | + | <see>Package sagbi/SB.TruncSAGBI</see> |
+ | <see>Package sagbi/SB.SAGBITimeout</see> | ||
+ | <see>Package sagbi/SB.IsSAGBIOf</see> | ||
+ | <see>Package sagbi/SB.GetSAGBI</see> | ||
+ | <see>Package sagbi/SB.GetTruncSAGBI</see> | ||
+ | </seealso> | ||
<types> | <types> | ||
<type>sagbi</type> | <type>sagbi</type> | ||
<type>poly</type> | <type>poly</type> | ||
</types> | </types> | ||
− | <key> | + | <key>SAGBI</key> |
− | <key> | + | <key>SB.SAGBI</key> |
− | <key>sagbi. | + | <key>apcocoa/sagbi.SAGBI</key> |
− | <wiki-category> | + | <wiki-category>Package sagbi</wiki-category> |
</command> | </command> |
Revision as of 17:57, 27 October 2020
This article is about a function from ApCoCoA-2. If you are looking for the ApCoCoA-1 version of it, see ApCoCoA-1:SB.Sagbi and ApCoCoA-1:SB.ReducedSagbi. |
SB.SAGBI
Computes a finite SAGBI-basis of a subalgebra if existing.
Syntax
SB.SAGBI(G:LIST of POLY):LIST of POLY
Description
This function computes a finite SAGBI-basis of a subalgebra S generated by the polynomials of the list G, if a finite SAGBI-basis of S is existing. Then a list of polynomials is returned which form a SAGBI-basis of S. Otherwise the computation runs until it is interrupted.
@param G A list of polynomials which generates a subalgebra.
@return A list of polynomials which form a finite SAGBI-basis of the subalgebra generated by G.
Example
Use QQ[x,y,z], DegRevLex; S := SB.SAGBI([x^2 -z^2, x*y +z^2, y^2 -2*z^2]); indent(S); -- [ -- y^2 -2*z^2, -- x*y +z^2, -- x^2 -z^2, -- x^2*z^2 +x*y*z^2 +(1/2)*y^2*z^2 +(-1/2)*z^4 -- ]
See also
Package sagbi/SB.GetTruncSAGBI