Difference between revisions of "Package sagbi/SB.IsInToricRing"

From ApCoCoAWiki
(Created page with "{{Version|2}} <command> <title>SB.IsInToricRing</title> <short_description>This function checks whether a given polynomial is in a toric subalgebra.</short_description>...")
 
(finished description)
Line 37: Line 37:
 
   </types>
 
   </types>
  
   <key> </key>
+
   <key>IsInToricRing</key>
   <key> </key>
+
   <key>SB.IsInToricRing</key>
   <key> </key>
+
   <key>apcocoa/sagbi.IsInToricRing</key>
  
   <wiki-category>Package </wiki-category>
+
   <wiki-category>Package sagbi</wiki-category>
  
 
</command>
 
</command>

Revision as of 12:15, 26 October 2020

This article is about a function from ApCoCoA-2.

SB.IsInToricRing

This function checks whether a given polynomial is in a toric subalgebra.

Syntax

SB.IsInToricRing(f: RINGELEM, S: TAGGED("$apcocoa/sagbi.Subalgebra")): BOOL
  

Description

This function takes a polynomial f and a subalgebra S generated by a set of terms and checks whether f is a toric ring.

  • @param f A polynomial

  • @param S A subalgebra of RingOf(f)

  • @return true if f is an element of S and false otherwise.

Example

Use R ::= QQ[x,y,z];
S := SB.Subalgebra(R,[x^2,x*y,y*z]);
f := x^5*y^3*z^2 + x^4*y^2*z^2;
SB.IsInToricRing(f,S);
-- true
    

See also

Package sagbi/SB.IsInSubalgebra

Package sagbi/SB.IsInSubalgebra_SAGBI

Package sagbi/SB.IsInSA

Package sagbi/SB.IsInSA_SAGBI