Difference between revisions of "ApCoCoA-1:Weyl.WSPoly"
From ApCoCoAWiki
m (Bot: Category moved) |
m (insert version info) |
||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
− | <command> | + | {{Version|1}} |
+ | <command> | ||
<title>Weyl.WSPoly</title> | <title>Weyl.WSPoly</title> | ||
<short_description>Computes the S-polynomial of two Weyl polynomials.</short_description> | <short_description>Computes the S-polynomial of two Weyl polynomials.</short_description> | ||
Line 14: | Line 15: | ||
</itemize> | </itemize> | ||
− | <em>Note:</em> All polynomials that are not in normal form should be first converted into normal form using <ref>Weyl.WNormalForm</ref>, otherwise you may get unexpected results. | + | <em>Note:</em> All polynomials that are not in normal form should be first converted into normal form using <ref>ApCoCoA-1:Weyl.WNormalForm|Weyl.WNormalForm</ref>, otherwise you may get unexpected results. |
<example> | <example> | ||
Line 38: | Line 39: | ||
</description> | </description> | ||
<seealso> | <seealso> | ||
− | <see>Weyl.WNormalForm</see> | + | <see>ApCoCoA-1:Weyl.WNormalForm|Weyl.WNormalForm</see> |
</seealso> | </seealso> | ||
<types> | <types> |
Latest revision as of 10:40, 7 October 2020
This article is about a function from ApCoCoA-1. |
Weyl.WSPoly
Computes the S-polynomial of two Weyl polynomials.
Syntax
Weyl.WSPoly(F:POLY,G:POLY):POLY
Description
Computes the S-polynomial of F and G.
@param F A Weyl polynomial in normal form.
@param G A Weyl polynomial in normal form.
@result The S-polynomial of F and G.
Note: All polynomials that are not in normal form should be first converted into normal form using Weyl.WNormalForm, otherwise you may get unexpected results.
Example
W3::=ZZ/(7)[x[1..3],d[1..3]]; Use W3; F1:=-d[1]^3d[2]^5d[3]^5+x[2]^5; F2:=-3x[2]d[2]^5d[3]^5+x[2]d[1]^3; F3:=-2d[1]^4d[2]^5-x[1]d[2]^7+x[3]^3d[3]^5; Weyl.WSPoly(F1,F2); x[2]d[1]^6 - 3x[2]^6 ------------------------------- Weyl.WSPoly(F2,F3); -3x[1]x[2]d[2]^7d[3]^5 + 3x[2]x[3]^3d[3]^10 + 3x[2]x[3]^2d[3]^9 - 2x[2]x[3]d[3]^8 - 2x[2]d[1]^7 - 2x[2]d[3]^7 ------------------------------- Weyl.WSPoly(F1,F3); -x[1]d[2]^7d[3]^5 + x[3]^3d[3]^10 + x[3]^2d[3]^9 - 3x[3]d[3]^8 - 3d[3]^7 - 2x[2]^5d[1] ------------------------------- Weyl.WSPoly(F3,F1); x[1]d[2]^7d[3]^5 - x[3]^3d[3]^10 - x[3]^2d[3]^9 + 3x[3]d[3]^8 + 3d[3]^7 + 2x[2]^5d[1] -------------------------------
See also