Difference between revisions of "ApCoCoA-1:Weyl.WRGB"
From ApCoCoAWiki
(Updated example.) |
m (insert version info) |
||
(7 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
− | <command> | + | {{Version|1}} |
+ | <command> | ||
<title>Weyl.WRGB</title> | <title>Weyl.WRGB</title> | ||
− | <short_description>Reduced Groebner basis of an ideal I in Weyl algebra <tt>A_n</tt>.</short_description> | + | <short_description>Reduced Groebner basis of an ideal <tt>I</tt> in Weyl algebra <tt>A_n</tt>.</short_description> |
<syntax> | <syntax> | ||
Weyl.WRGB(GB:LIST):LIST | Weyl.WRGB(GB:LIST):LIST | ||
</syntax> | </syntax> | ||
<description> | <description> | ||
− | |||
<par/> | <par/> | ||
− | This function converts Groebner basis GB computed by | + | This function converts a Weyl Groebner basis <tt>GB</tt> computed by ApCoCoAServer into the reduced Weyl Groebner Basis. If <tt>GB</tt> is not a Groebner basis then the output will not be the reduced Groebner basis. In fact, this function reduces a list <tt>GB</tt> of Weyl polynomials using <ref>ApCoCoA-1:Weyl.WNR|Weyl.WNR</ref> into a new list <tt>L</tt> such that <tt>Ideal(L) = Ideal(GB)</tt>, every polynomial is reduced with respect to the remaining polynomials in the list <tt>L</tt> and leading coefficient of each polynomial in <tt>L</tt> is 1. |
− | |||
<itemize> | <itemize> | ||
Line 22: | Line 21: | ||
Weyl.WRGB(L); | Weyl.WRGB(L); | ||
[1] | [1] | ||
+ | ------------------------------- | ||
+ | </example> | ||
+ | <example> | ||
+ | A2::=ZZ/7[x[1..2],y[1..2]]; -- define appropriate ring | ||
+ | Use A2; | ||
+ | I:=Ideal(2x[1]^14y[1]^7,x[1]^2y[1]^3+x[1]^2-1,y[2]^7-1,x[2]^3y[2]^2-x[2]y[2]-3x[2]-1); | ||
+ | GbI:=Weyl.WGB(I,0);Len(GbI); | ||
+ | |||
+ | ------------------------------- | ||
+ | -- CoCoAServer: computing Cpu Time = 0.485 | ||
+ | ------------------------------- | ||
+ | 42 -- size of complete GB of the ideal I | ||
+ | ------------------------------- | ||
+ | Time GbI:=Weyl.WRGB(GbI);Len(GbI); | ||
+ | |||
+ | Cpu time = 9.61, User time = 10 | ||
+ | ------------------------------- | ||
+ | 11 | ||
+ | ------------------------------- | ||
+ | -- Done. | ||
+ | ------------------------------- | ||
+ | Time GbI:=Weyl.WRGBS(GbI);Len(GbI); -- Weyl.WRGBS() can now be used for calling same implementation in ApCoCoALib | ||
+ | -- note that this speeds up the computations | ||
+ | ------------------------------- | ||
+ | -- CoCoAServer: computing Cpu Time = 0 | ||
+ | ------------------------------- | ||
+ | Cpu time = 0.04, User time = 0 | ||
+ | ------------------------------- | ||
+ | 11 -- this is now size of reduced GB of the ideal I | ||
+ | ------------------------------- | ||
+ | -- Done. | ||
------------------------------- | ------------------------------- | ||
</example> | </example> | ||
</description> | </description> | ||
<seealso> | <seealso> | ||
− | <see>Weyl.WNormalForm</see> | + | <see>ApCoCoA-1:Weyl.WNormalForm|Weyl.WNormalForm</see> |
− | <see>Weyl.WGB</see> | + | <see>ApCoCoA-1:Weyl.WGB|Weyl.WGB</see> |
− | <see>Introduction to Groebner Basis in CoCoA</see> | + | <see>ApCoCoA-1:Weyl.WRGBS|Weyl.WRGBS</see> |
− | <see>Introduction to CoCoAServer</see> | + | <see>ApCoCoA-1:Weyl.WRedGB|Weyl.WRedGB</see> |
+ | <see>ApCoCoA-1:Introduction to Groebner Basis in CoCoA|Introduction to Groebner Basis in CoCoA</see> | ||
+ | <see>ApCoCoA-1:Introduction to CoCoAServer|Introduction to CoCoAServer</see> | ||
</seealso> | </seealso> | ||
<types> | <types> | ||
Line 36: | Line 68: | ||
</types> | </types> | ||
<key>weyl.wrgb</key> | <key>weyl.wrgb</key> | ||
+ | <key>Weyl.WRGB</key> | ||
<key>wrgb</key> | <key>wrgb</key> | ||
− | <wiki-category>Package_weyl</wiki-category> | + | <wiki-category>ApCoCoA-1:Package_weyl</wiki-category> |
</command> | </command> |
Latest revision as of 10:39, 7 October 2020
This article is about a function from ApCoCoA-1. |
Weyl.WRGB
Reduced Groebner basis of an ideal I in Weyl algebra A_n.
Syntax
Weyl.WRGB(GB:LIST):LIST
Description
This function converts a Weyl Groebner basis GB computed by ApCoCoAServer into the reduced Weyl Groebner Basis. If GB is not a Groebner basis then the output will not be the reduced Groebner basis. In fact, this function reduces a list GB of Weyl polynomials using Weyl.WNR into a new list L such that Ideal(L) = Ideal(GB), every polynomial is reduced with respect to the remaining polynomials in the list L and leading coefficient of each polynomial in L is 1.
@param GB Groebner Basis of an ideal in the Weyl algebra.
@result The reduced Groebner Basis of the given ideal.
Example
A1::=QQ[x,d]; --Define appropriate ring Use A1; L:=[x,d,1]; Weyl.WRGB(L); [1] -------------------------------
Example
A2::=ZZ/7[x[1..2],y[1..2]]; -- define appropriate ring Use A2; I:=Ideal(2x[1]^14y[1]^7,x[1]^2y[1]^3+x[1]^2-1,y[2]^7-1,x[2]^3y[2]^2-x[2]y[2]-3x[2]-1); GbI:=Weyl.WGB(I,0);Len(GbI); ------------------------------- -- CoCoAServer: computing Cpu Time = 0.485 ------------------------------- 42 -- size of complete GB of the ideal I ------------------------------- Time GbI:=Weyl.WRGB(GbI);Len(GbI); Cpu time = 9.61, User time = 10 ------------------------------- 11 ------------------------------- -- Done. ------------------------------- Time GbI:=Weyl.WRGBS(GbI);Len(GbI); -- Weyl.WRGBS() can now be used for calling same implementation in ApCoCoALib -- note that this speeds up the computations ------------------------------- -- CoCoAServer: computing Cpu Time = 0 ------------------------------- Cpu time = 0.04, User time = 0 ------------------------------- 11 -- this is now size of reduced GB of the ideal I ------------------------------- -- Done. -------------------------------
See also
Introduction to Groebner Basis in CoCoA