Difference between revisions of "ApCoCoA-1:Weyl.WRGB"
From ApCoCoAWiki
m (fixed links to namespace ApCoCoA) |
m (insert version info) |
||
Line 1: | Line 1: | ||
− | <command> | + | {{Version|1}} |
+ | <command> | ||
<title>Weyl.WRGB</title> | <title>Weyl.WRGB</title> | ||
<short_description>Reduced Groebner basis of an ideal <tt>I</tt> in Weyl algebra <tt>A_n</tt>.</short_description> | <short_description>Reduced Groebner basis of an ideal <tt>I</tt> in Weyl algebra <tt>A_n</tt>.</short_description> |
Latest revision as of 10:39, 7 October 2020
This article is about a function from ApCoCoA-1. |
Weyl.WRGB
Reduced Groebner basis of an ideal I in Weyl algebra A_n.
Syntax
Weyl.WRGB(GB:LIST):LIST
Description
This function converts a Weyl Groebner basis GB computed by ApCoCoAServer into the reduced Weyl Groebner Basis. If GB is not a Groebner basis then the output will not be the reduced Groebner basis. In fact, this function reduces a list GB of Weyl polynomials using Weyl.WNR into a new list L such that Ideal(L) = Ideal(GB), every polynomial is reduced with respect to the remaining polynomials in the list L and leading coefficient of each polynomial in L is 1.
@param GB Groebner Basis of an ideal in the Weyl algebra.
@result The reduced Groebner Basis of the given ideal.
Example
A1::=QQ[x,d]; --Define appropriate ring Use A1; L:=[x,d,1]; Weyl.WRGB(L); [1] -------------------------------
Example
A2::=ZZ/7[x[1..2],y[1..2]]; -- define appropriate ring Use A2; I:=Ideal(2x[1]^14y[1]^7,x[1]^2y[1]^3+x[1]^2-1,y[2]^7-1,x[2]^3y[2]^2-x[2]y[2]-3x[2]-1); GbI:=Weyl.WGB(I,0);Len(GbI); ------------------------------- -- CoCoAServer: computing Cpu Time = 0.485 ------------------------------- 42 -- size of complete GB of the ideal I ------------------------------- Time GbI:=Weyl.WRGB(GbI);Len(GbI); Cpu time = 9.61, User time = 10 ------------------------------- 11 ------------------------------- -- Done. ------------------------------- Time GbI:=Weyl.WRGBS(GbI);Len(GbI); -- Weyl.WRGBS() can now be used for calling same implementation in ApCoCoALib -- note that this speeds up the computations ------------------------------- -- CoCoAServer: computing Cpu Time = 0 ------------------------------- Cpu time = 0.04, User time = 0 ------------------------------- 11 -- this is now size of reduced GB of the ideal I ------------------------------- -- Done. -------------------------------
See also
Introduction to Groebner Basis in CoCoA