Difference between revisions of "ApCoCoA-1:Weyl.WNormalRemainder"
From ApCoCoAWiki
(New page: <command> <title>Weyl.WNormalRemainder</title> <short_description>Computes the normal remainder of a Weyl polynomial <tt>F</tt> with respect to a polynomial or a set of polynomi...) |
m (insert version info) |
||
(3 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | <command> | + | {{Version|1}} |
+ | <command> | ||
<title>Weyl.WNormalRemainder</title> | <title>Weyl.WNormalRemainder</title> | ||
<short_description>Computes the normal remainder of a Weyl polynomial <tt>F</tt> with respect | <short_description>Computes the normal remainder of a Weyl polynomial <tt>F</tt> with respect | ||
Line 8: | Line 9: | ||
</syntax> | </syntax> | ||
<description> | <description> | ||
− | |||
Computes the normal remainder of a Weyl polynomial <tt>F</tt> with respect to a polynomial <tt>G</tt> or a set of polynomials in the list <tt>G</tt>. | Computes the normal remainder of a Weyl polynomial <tt>F</tt> with respect to a polynomial <tt>G</tt> or a set of polynomials in the list <tt>G</tt>. | ||
If <tt>G</tt> is Groebner basis then this function is used for ideal membership problem. | If <tt>G</tt> is Groebner basis then this function is used for ideal membership problem. | ||
Line 18: | Line 18: | ||
</itemize> | </itemize> | ||
− | <em>Note:</em> All polynomials that are not in normal form should be first converted into normal form using <ref>Weyl.WNormalForm</ref>, otherwise you may get unexpected results. | + | <em>Note:</em> All polynomials that are not in normal form should be first converted into normal form using <ref>ApCoCoA-1:Weyl.WNormalForm|Weyl.WNormalForm</ref>, otherwise you may get unexpected results. |
<example> | <example> | ||
Line 43: | Line 43: | ||
</description> | </description> | ||
<seealso> | <seealso> | ||
− | <see>Weyl.WNormalForm</see> | + | <see>ApCoCoA-1:Weyl.WNormalForm|Weyl.WNormalForm</see> |
− | <see>Weyl.WNR</see> | + | <see>ApCoCoA-1:Weyl.WNR|Weyl.WNR</see> |
</seealso> | </seealso> | ||
<types> | <types> | ||
Line 53: | Line 53: | ||
<key>weyl normal remainder</key> | <key>weyl normal remainder</key> | ||
<key>WNormalRemainder</key> | <key>WNormalRemainder</key> | ||
− | <wiki-category>Package_weyl</wiki-category> | + | <wiki-category>ApCoCoA-1:Package_weyl</wiki-category> |
</command> | </command> |
Latest revision as of 10:39, 7 October 2020
This article is about a function from ApCoCoA-1. |
Weyl.WNormalRemainder
Computes the normal remainder of a Weyl polynomial F with respect
to a polynomial or a set of polynomials.
Syntax
Weyl.WNormalRemainder(F:POLY,G:POLY):POLY Weyl.WNormalRemainder(F:POLY,G:LIST):POLY
Description
Computes the normal remainder of a Weyl polynomial F with respect to a polynomial G or a set of polynomials in the list G.
If G is Groebner basis then this function is used for ideal membership problem.
@param F A Weyl polynomial in normal form.
@param G A Weyl polynomial or a list of Weyl polynomials.
@return The remainder as a Weyl polynomial using normal remainder algorithm in Weyl algebra A_n.
Note: All polynomials that are not in normal form should be first converted into normal form using Weyl.WNormalForm, otherwise you may get unexpected results.
Example
W3::=ZZ/(7)[x[1..3],d[1..3]]; Use W3; F1:=-d[1]^3d[2]^5d[3]^5+x[2]^5; F2:=-3x[2]d[2]^5d[3]^5+x[2]d[1]^3; F3:=-2d[1]^4d[2]^5-x[1]d[2]^7+x[3]^3d[3]^5; L:=[F1,F2,F3]; Weyl.WNormalRemainder(F1,L); 0 ------------------------------- Weyl.WNormalRemainder(F1,Gens(Ideal(F2,F3))); -d[1]^3d[2]^5d[3]^5 + x[2]^5 ------------------------------- Weyl.WNormalRemainder(x[2]^5-d[1]^3,L); x[2]^5 - d[1]^3 ------------------------------- Weyl.WNormalRemainder(x[2]^5-d[1]^3d[2]^7d[3]^6,F1); -x[2]^5d[2]^2d[3] - 3x[2]^4d[2]d[3] + x[2]^5 + x[2]^3d[3] -------------------------------
See also