Difference between revisions of "ApCoCoA-1:Slinalg.SEF"

From ApCoCoAWiki
m (insert version info)
 
(11 intermediate revisions by 5 users not shown)
Line 1: Line 1:
 +
{{Version|1}}
 
<command>
 
<command>
 
<title>Slinalg.SEF</title>
 
<title>Slinalg.SEF</title>
<short_description>Calculates the Echelon form of a sparse matrix over F2.</short_description>
+
<short_description>Computes the row echelon form of a sparse matrix over F2.</short_description>
 
<syntax>
 
<syntax>
Slinalg.SEF(NRow : INT ,NCol : INT, Mat : LIST)
+
Slinalg.SEF(NRow:INT, NCol:INT, M:LIST): LIST
 +
Slinalg.SEF_v2(NRow:INT, NCol:INT, M:LIST): LIST
 
</syntax>
 
</syntax>
 
<description>
 
<description>
 
<em>Please note:</em> The function(s) explained on this page is/are using the <em>ApCoCoAServer</em>. You will have to start the ApCoCoAServer in order to use it/them.
 
<em>Please note:</em> The function(s) explained on this page is/are using the <em>ApCoCoAServer</em>. You will have to start the ApCoCoAServer in order to use it/them.
 +
<par/>
 +
Both functions compute the row echelon form of a sparse matrix. The first one performs usual gaussian elimination. The second one collects all the rows which contain the pivot element and then select the row with fewer number of non zero elements to perform elimination. Therefore, the second one is more efficient than the first one.
  
 
<itemize>
 
<itemize>
Line 12: Line 16:
  
 
<item>@param <em>NCol</em>: Number of Columns of the matrix.</item>
 
<item>@param <em>NCol</em>: Number of Columns of the matrix.</item>
<item>@param <em>Mat</em>: List of lists containing positions of non zero elements.</item>
+
<item>@param <em>M</em>: List of lists containing positions of non zero elements.</item>
<item>@return A list of lists containing the Echelon form of the matrix.</item>
+
<item>@return A list of lists containing the row echelon form of the matrix M.</item>
 
</itemize>
 
</itemize>
 
   
 
   
Line 43: Line 47:
 
 
 
-------------------------------
 
-------------------------------
 +
</example>
 +
 +
<example>
 +
Use ZZ/(2)[x];
 +
NRow:=10;
 +
NCol:=13;
 +
M := [[1, 2, 6, 7],
 +
      [1, 2, 4, 5, 6],
 +
      [2, 3],
 +
      [2, 3, 10, 11],
 +
      [2, 4, 6, 7, 9, 10],
 +
      [2, 10, 11, 13],
 +
      [5, 6, 8],
 +
      [ 6, 8, 9,10,12],
 +
      [6, 10, 12],
 +
      [10, 13]];
  
 +
Slinalg.SEF_v2(NRow, NCol, M);
 +
[[1, 2, 6, 7],
 +
[2, 3],
 +
[3, 10, 11, 13],
 +
[4, 5, 7],
 +
[5, 6, 8],
 +
[6, 10, 12],
 +
[8, 9],
 +
[10, 11],
 +
[11, 13]]
  
 +
-------------------------------
 
</example>
 
</example>
 
 
</description>
 
</description>
 
<types>
 
<types>
 
   <type>apcocoaserver</type>
 
   <type>apcocoaserver</type>
   <type>poly_system</type>
+
   <type>matrix</type>
 
</types>
 
</types>
  
 
<seealso>
 
<seealso>
  <see>Introduction to CoCoAServer</see>
+
  <see>ApCoCoA-1:Introduction to CoCoAServer|Introduction to CoCoAServer</see>
  <see>Bertini.BSolve</see>
+
  <see>ApCoCoA-1:IML.REF|IML.REF</see>
<see>Bertini.BMSolve</see>
+
  <see>ApCoCoA-1:LinAlg.REF|LinAlg.REF</see>
<see>Bertini.BUHSolve</see>
 
 
</seealso>
 
</seealso>
  
<key>bcmsolve</key>
+
<key>slinalg.sef</key>
<key>bertini.bcmsolve</key>
+
<key>sef</key>
<key>solve zero dimensional polynomial system</key>
+
<key>sparse matrix</key>
<wiki-category>Package_slinalg</wiki-category>
+
<wiki-category>ApCoCoA-1:Package_slinalg</wiki-category>
 
</command>
 
</command>

Latest revision as of 10:34, 7 October 2020

This article is about a function from ApCoCoA-1.

Slinalg.SEF

Computes the row echelon form of a sparse matrix over F2.

Syntax

Slinalg.SEF(NRow:INT, NCol:INT, M:LIST): LIST 
Slinalg.SEF_v2(NRow:INT, NCol:INT, M:LIST): LIST 

Description

Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.

Both functions compute the row echelon form of a sparse matrix. The first one performs usual gaussian elimination. The second one collects all the rows which contain the pivot element and then select the row with fewer number of non zero elements to perform elimination. Therefore, the second one is more efficient than the first one.

  • @param NRow: Number of rows of the matrix.

  • @param NCol: Number of Columns of the matrix.

  • @param M: List of lists containing positions of non zero elements.

  • @return A list of lists containing the row echelon form of the matrix M.

Example

Use ZZ/(2)[x];
NRow:=10;
NCol:=13;
M := [[1, 2, 6, 7],
      [1, 2, 4, 5, 6], 
      [2, 3], 
      [2, 3, 10, 11], 
      [2, 4, 6, 7, 9, 10], 
      [2, 10, 11, 13], 
      [5, 6, 8],
      [ 6, 8, 9,10,12],
      [6, 10, 12], 
      [10, 13]];

Slinalg.SEF(NRow, NCol, M);
[[1,2,6,7],
 [2,3],
 [3,4,6,7,9,10],
 [4,5,7],
 [5,6,8],
 [6,8,9,10,12],
 [8,9,11,13],
 [10,11],
 [11,13]]
	
-------------------------------

Example

Use ZZ/(2)[x];
NRow:=10;
NCol:=13;
M := [[1, 2, 6, 7],
      [1, 2, 4, 5, 6], 
      [2, 3], 
      [2, 3, 10, 11], 
      [2, 4, 6, 7, 9, 10], 
      [2, 10, 11, 13], 
      [5, 6, 8],
      [ 6, 8, 9,10,12],
      [6, 10, 12], 
      [10, 13]];

Slinalg.SEF_v2(NRow, NCol, M);
[[1, 2, 6, 7],
 [2, 3],
 [3, 10, 11, 13],
 [4, 5, 7],
 [5, 6, 8],
 [6, 10, 12],
 [8, 9],
 [10, 11],
 [11, 13]]

-------------------------------


See also

Introduction to CoCoAServer

IML.REF

LinAlg.REF