Difference between revisions of "ApCoCoA-1:Num.EigenValuesAndAllVectors"
m (fixed links to namespace ApCoCoA) |
m (insert version info) |
||
Line 1: | Line 1: | ||
− | <command> | + | {{Version|1}} |
+ | <command> | ||
<title>Num.EigenValuesAndAllVectors</title> | <title>Num.EigenValuesAndAllVectors</title> | ||
<short_description>Computes eigenvalues and left and right eigenvectors of a matrix.</short_description> | <short_description>Computes eigenvalues and left and right eigenvectors of a matrix.</short_description> |
Revision as of 10:28, 7 October 2020
This article is about a function from ApCoCoA-1. |
Num.EigenValuesAndAllVectors
Computes eigenvalues and left and right eigenvectors of a matrix.
Syntax
Num.EigenValuesAndAllVectors(A:MAT):[B:MAT, C:MAT, D:MAT, E:MAT , F:MAT]
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.
This function returns a list of five matrices, containing numerical approximation of the eigenvalues of the matrix A and right and left eigenvectors.
@param A A quadratic matrix with rational entries.
@return The output is a list of five matrices [B:MAT, C:MAT, D:MAT, E:MAT, F:MAT]. The first matrix B contains the complex eigenvalues of the matrix A, i.e. the first entry of a column is the real part and the second entry of the same column is the imaginary part of the eigenvalue. The matrices C and D represent the right eigenvectors of A, i.e. the j-th column of C contains the real part of the right eigenvector corresponding to eigenvalue j and the j-th column of D contains the imaginary part of the same right eigenvector corresponding to eigenvalue j. The matrices E and F store the left eigenvectors analogue to C and D.
Example
A:=Mat([[1,2,7,18],[2,4,9,12],[23,8,9,10],[7,5,3,2]]); Dec(Num.EigenValuesAndAllVectors(A),3); -- CoCoAServer: computing Cpu Time = 0.016 ------------------------------- [Mat([ [<quotes>28.970</quotes>, <quotes>-13.677</quotes>, <quotes>0.353</quotes>, <quotes>0.353</quotes>], [<quotes>0</quotes>, <quotes>0</quotes>, <quotes>3.051</quotes>, <quotes>-3.051</quotes>] ]), Mat([ [<quotes>0.538</quotes>, <quotes>-0.600</quotes>, <quotes>0.389</quotes>, <quotes>0.389</quotes>], [<quotes>0.311</quotes>, <quotes>-0.222</quotes>, <quotes>-0.442</quotes>, <quotes>-0.442</quotes>], [<quotes>0.427</quotes>, <quotes>0.174</quotes>, <quotes>0.050</quotes>, <quotes>0.050</quotes>], [<quotes>0.656</quotes>, <quotes>0.748</quotes>, <quotes>0</quotes>, <quotes>0</quotes>] ]), Mat([ [<quotes>0</quotes>, <quotes>0</quotes>, <quotes>-0.174</quotes>, <quotes>0.174</quotes>], [<quotes>0</quotes>, <quotes>0</quotes>, <quotes>0.139</quotes>, <quotes>-0.139</quotes>], [<quotes>0</quotes>, <quotes>0</quotes>, <quotes>0.265</quotes>, <quotes>-0.265</quotes>], [<quotes>0</quotes>, <quotes>0</quotes>, <quotes>-0.727</quotes>, <quotes>0.727</quotes>] ]), Mat([ [<quotes>0.394</quotes>, <quotes>-0.581</quotes>, <quotes>0.260</quotes>, <quotes>0.260</quotes>], [<quotes>0.435</quotes>, <quotes>-0.442</quotes>, <quotes>-0.547</quotes>, <quotes>-0.547</quotes>], [<quotes>0.763</quotes>, <quotes>0.621</quotes>, <quotes>0</quotes>, <quotes>0</quotes>], [<quotes>0.268</quotes>, <quotes>0.281</quotes>, <quotes>0.046</quotes>, <quotes>0.046</quotes>] ]), Mat([ [<quotes>0</quotes>, <quotes>0</quotes>, <quotes>-0.031</quotes>, <quotes>0.031</quotes>], [<quotes>0</quotes>, <quotes>0</quotes>, <quotes>-0.301</quotes>, <quotes>0.301</quotes>], [<quotes>0</quotes>, <quotes>0</quotes>, <quotes>0.680</quotes>, <quotes>-0.680</quotes>], [<quotes>0</quotes>, <quotes>0</quotes>, <quotes>-0.274</quotes>, <quotes>0.274</quotes>] ])] -------------------------------
See also