Difference between revisions of "ApCoCoA-1:NC.Deg"

From ApCoCoAWiki
m (insert version info)
 
(20 intermediate revisions by 4 users not shown)
Line 1: Line 1:
 +
{{Version|1}}
 
<command>
 
<command>
 
<title>NC.Deg</title>
 
<title>NC.Deg</title>
 
<short_description>
 
<short_description>
(Standard) degree of a polynomial over a free associative <tt>K</tt>-algebra.
+
The standard degree of a polynomial in a non-commutative polynomial ring.
 
</short_description>
 
</short_description>
 
<syntax>
 
<syntax>
Line 8: Line 9:
 
</syntax>
 
</syntax>
 
<description>
 
<description>
<em>Please note:</em> The function(s) explained on this page is/are using the <em>ApCoCoAServer</em>. You will have to start the ApCoCoAServer in order to use it/them.
 
 
<par/>
 
<par/>
Please set ring environment coefficient field <tt>K</tt>, alphabet (or indeterminates) <tt>X</tt> and ordering through the functions <ref>NC.SetFp</ref>(Prime), <ref>NC.SetX</ref>(X) and <ref>NC.SetOrdering</ref>(Ordering), respectively, before calling the function. Default coefficient field is <tt>Q</tt>. Default ordering is length-lexicographic ordering (<quotes>LLEX</quotes>). For more information, please check the relevant functions.
+
Please set non-commutative polynomial ring (via the command <ref>ApCoCoA-1:Use|Use</ref>) before calling this function. For more information, please check the relevant commands and functions.
 
<itemize>
 
<itemize>
<item>@param <em>F</em>: a polynomial in <tt>K&lt;X&gt;</tt>. Each polynomial is represented as a LIST of LISTs, which are pairs of form [C, W] where C is a coefficient and W is a word (or term). Each term is represented as a STRING. For example, <tt>xy^2x</tt> is represented as <quotes>xyyx</quotes>, unit is represented as an empty string <quotes></quotes>. Then, polynomial <tt>F=xy-y+1</tt> is represented as F:=[[1,<quotes>xy</quotes>], [-1, <quotes>y</quotes>], [1,<quotes></quotes>]]. <tt>0</tt> polynomial is represented as an empty LIST [].</item>
+
<item>@param <em>F</em>: a non-commutative polynomial. Each polynomial is represented as a LIST of LISTs, and each element in every inner LIST involves only one indeterminate or none (a constant). For example, the polynomial <tt>f=2x[2]y[1]x[2]^2-9y[2]x[1]^2x[2]^3+5</tt> is represented as F:=[[2x[1],y[1],x[2]^2], [-9y[2],x[1]^2,x[2]^3], [5]]. The zero polynomial <tt>0</tt> is represented as the empty LIST [].</item>
<item>@return: a INT which represents a (standard) degree of F. If F=0, the function returns 0. </item>
+
<item>@return: an INT which represents the standard degree of F. Note that the standard degree of <tt>0</tt> is 0. </item>
 
</itemize>
 
</itemize>
 
<example>
 
<example>
NC.SetX(<quotes>abc</quotes>);
+
USE QQ[x[1..2],y[1..2]];
F:=[[1,<quotes>ab</quotes>],[2,<quotes>aa</quotes>],[3,<quotes>bb</quotes>],[4,<quotes>bab</quotes>]];
+
F1:= [[2x[1],x[2]], [13y[2]], [5]]; -- 2x[1]x[2]+13y[2]+5
NC.Deg(F);
+
NC.Deg(F1);
3
+
 
 +
2
 
-------------------------------
 
-------------------------------
NC.Deg([]); -- 0 polynomial
+
NC.Deg([]);
 +
 
 
0
 
0
 
-------------------------------
 
-------------------------------
Line 27: Line 29:
 
</description>
 
</description>
 
<seealso>
 
<seealso>
<see>NC.Add</see>
+
<see>ApCoCoA-1:Use|Use</see>
<see>NC.Deg</see>
 
<see>NC.FindPolynomials</see>
 
<see>NC.GB</see>
 
<see>NC.HF</see>
 
<see>NC.Intersection</see>
 
<see>NC.IsGB</see>
 
<see>NC.KernelOfHomomorphism</see>
 
<see>NC.LC</see>
 
<see>NC.LT</see>
 
<see>NC.NR</see>
 
<see>NC.ReducedGB</see>
 
<see>NC.MRBP</see>
 
<see>NC.SetFp</see>
 
<see>NC.SetOrdering</see>
 
<see>NC.SetRelations</see>
 
<see>NC.SetRules</see>
 
<see>NC.SetX</see>
 
<see>NC.Subtract</see>
 
<see>NC.UnsetFp</see>
 
<see>NC.UnsetOrdering</see>
 
<see>NC.UnsetRelations</see>
 
<see>NC.UnsetRules</see>
 
<see>NC.UnsetX</see>
 
<see>Introduction to CoCoAServer</see>
 
 
</seealso>
 
</seealso>
 
<types>
 
<types>
 
<type>apcocoaserver</type>
 
<type>apcocoaserver</type>
<type>groebner</type>
+
<type>polynomial</type>
 +
<type>non_commutative</type>
 
</types>
 
</types>
<key>gbmr.Deg</key>
+
<key>ncpoly.Deg</key>
 
<key>NC.Deg</key>
 
<key>NC.Deg</key>
 
<key>Deg</key>
 
<key>Deg</key>
<wiki-category>Package_gbmr</wiki-category>
+
<wiki-category>ApCoCoA-1:Package_ncpoly</wiki-category>
 
</command>
 
</command>

Latest revision as of 10:13, 7 October 2020

This article is about a function from ApCoCoA-1.

NC.Deg

The standard degree of a polynomial in a non-commutative polynomial ring.

Syntax

NC.Deg(F:LIST):INT

Description


Please set non-commutative polynomial ring (via the command Use) before calling this function. For more information, please check the relevant commands and functions.

  • @param F: a non-commutative polynomial. Each polynomial is represented as a LIST of LISTs, and each element in every inner LIST involves only one indeterminate or none (a constant). For example, the polynomial f=2x[2]y[1]x[2]^2-9y[2]x[1]^2x[2]^3+5 is represented as F:=[[2x[1],y[1],x[2]^2], [-9y[2],x[1]^2,x[2]^3], [5]]. The zero polynomial 0 is represented as the empty LIST [].

  • @return: an INT which represents the standard degree of F. Note that the standard degree of 0 is 0.

Example

USE QQ[x[1..2],y[1..2]];
F1:= [[2x[1],x[2]], [13y[2]], [5]]; -- 2x[1]x[2]+13y[2]+5
NC.Deg(F1);

2
-------------------------------
NC.Deg([]);

0
-------------------------------

See also

Use