Difference between revisions of "ApCoCoA-1:Latte.Minimize"
(New page: <command> <title>Latte.Minimize</title> <short_description> Minimizes the objective function over a polyhedral P given by a number of linear constraints</short_description> <syntax> Latte....) |
m (insert version info) |
||
(11 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
+ | {{Version|1}} | ||
<command> | <command> | ||
<title>Latte.Minimize</title> | <title>Latte.Minimize</title> | ||
− | <short_description> Minimizes the objective function over a polyhedral P given by a number of linear constraints</short_description> | + | <short_description>Minimizes the objective function over a polyhedral P given by a number of linear constraints.</short_description> |
<syntax> | <syntax> | ||
− | Latte.Minimize(Equations: LIST, LesserEq: LIST, GreaterEq: LIST, ObjectiveF: POLY): | + | Latte.Minimize(Equations: LIST, LesserEq: LIST, GreaterEq: LIST, ObjectiveF: POLY):LIST |
</syntax> | </syntax> | ||
<description> | <description> | ||
− | + | <em>Please note:</em> The function(s) explained on this page is/are using the <em>ApCoCoAServer</em>. You will have to start the ApCoCoAServer in order to use it/them. | |
<itemize> | <itemize> | ||
Line 13: | Line 14: | ||
<item>@param <em>LesserEq</em>: A list of linear polynomials, which are equivalent to the lower or equal-part of the polyhedral constraints</item> | <item>@param <em>LesserEq</em>: A list of linear polynomials, which are equivalent to the lower or equal-part of the polyhedral constraints</item> | ||
<item>@param <em>GreaterEq</em>: A list of linear polynomials, which are equivalent to the greater or equal-part of the polyhedral constraints</item> | <item>@param <em>GreaterEq</em>: A list of linear polynomials, which are equivalent to the greater or equal-part of the polyhedral constraints</item> | ||
− | <item>@param <em>ObjectiveF</em>: A linear | + | <item>@param <em>ObjectiveF</em>: A linear polynomial</item> |
− | <item>@return | + | <item>@return A list: <tt>[[Optimal coordinates], Optimal solution, [Coeffs of objective function]]</tt></item> |
</itemize> | </itemize> | ||
<example> | <example> | ||
+ | Use S ::= QQ[x,y]; | ||
+ | Equations := []; | ||
+ | LesserEq := [-x-2, x-y-24]; | ||
+ | GreaterEq := [-x,-y]; | ||
+ | ObjectiveF := x-2y; | ||
+ | Latte.Minimize(Equations, LesserEq, GreaterEq, ObjectiveF); | ||
+ | [[-2, 0], -2, [1, -2]] | ||
+ | ------------------------------- | ||
</example> | </example> | ||
</description> | </description> | ||
<types> | <types> | ||
− | <type> | + | <type>apcocoaserver</type> |
</types> | </types> | ||
− | <key> | + | <key>Latte</key> |
<key>Minimize</key> | <key>Minimize</key> | ||
<key>Latte.Minimize</key> | <key>Latte.Minimize</key> | ||
− | + | <wiki-category>ApCoCoA-1:Package_latte</wiki-category> | |
− | <wiki-category>Package_latte</wiki-category> | ||
</command> | </command> |
Latest revision as of 10:10, 7 October 2020
This article is about a function from ApCoCoA-1. |
Latte.Minimize
Minimizes the objective function over a polyhedral P given by a number of linear constraints.
Syntax
Latte.Minimize(Equations: LIST, LesserEq: LIST, GreaterEq: LIST, ObjectiveF: POLY):LIST
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.
@param Equations: A list of linear polynomials, which are equivalent to the equality-part of the polyhedral constraints
@param LesserEq: A list of linear polynomials, which are equivalent to the lower or equal-part of the polyhedral constraints
@param GreaterEq: A list of linear polynomials, which are equivalent to the greater or equal-part of the polyhedral constraints
@param ObjectiveF: A linear polynomial
@return A list: [[Optimal coordinates], Optimal solution, [Coeffs of objective function]]
Example
Use S ::= QQ[x,y]; Equations := []; LesserEq := [-x-2, x-y-24]; GreaterEq := [-x,-y]; ObjectiveF := x-2y; Latte.Minimize(Equations, LesserEq, GreaterEq, ObjectiveF); [[-2, 0], -2, [1, -2]] -------------------------------