Difference between revisions of "ApCoCoA-1:Latte.Count"

From ApCoCoAWiki
(New page: <command> <title>latte.Count</title> <short_description> Count</short_description> <syntax> latte.Count() </syntax> <description> {{ApCoCoAServer}} <itemize> <item><em></em></item> </it...)
 
m (insert version info)
 
(15 intermediate revisions by 5 users not shown)
Line 1: Line 1:
 +
{{Version|1}}
 
<command>
 
<command>
<title>latte.Count</title>
+
<title>Latte.Count</title>
<short_description> Count</short_description>
+
<short_description>Counts the lattice points of a polyhedral given by a number of linear constraints.</short_description>
 
<syntax>
 
<syntax>
latte.Count()
+
Latte.Count(Equations: LIST, LesserEq: LIST, GreaterEq: LIST):INT
 +
Latte.Count(Equations: LIST, LesserEq: LIST, GreaterEq: LIST, Dil: INT):INT
 
</syntax>
 
</syntax>
 +
 
<description>
 
<description>
{{ApCoCoAServer}}
+
<em>Please note:</em> The function(s) explained on this page is/are using the <em>ApCoCoAServer</em>. You will have to start the ApCoCoAServer in order to use it/them.
  
 
<itemize>
 
<itemize>
 
+
<item>@param <em>Equations</em>: A list of linear polynomials, which are equivalent to the equality-part of the polyhedral constraints</item>
<item><em></em></item>
+
<item>@param <em>LesserEq</em>: A list of linear polynomials, which are equivalent to the lower or equal-part of the polyhedral constraints</item>
 
+
<item>@param <em>GreaterEq</em>: A list of linear polynomials, which are equivalent to the greater or equal-part of the polyhedral constraints</item>
 +
<item>@return The number of lattice points in the given polyhedral P </item>
 +
</itemize>
 +
The following parameter is optional:
 +
<itemize>
 +
<item>@param <em>Dil</em>: Integer > 0, factor for dilation of the polyhedral P, to count the lattice points of the polyhedral n*P</item>
 
</itemize>
 
</itemize>
  
<example>
+
<em>IMPORTANT:</em> If the given polyhedral is unbound, the output of LattE is zero, as for an empty polyhedral.
 
 
</example>
 
  
 
<example>
 
<example>
 +
Use S ::= QQ[x,y];
 +
Equations := [];
 +
LesserEq := [1/2*x-1, x+1/3y-1];
 +
GreaterEq := [x,y];
 +
Latte.Count(Equations, LesserEq, GreaterEq);
  
 +
5
 +
-------------------------------
 
</example>
 
</example>
  
 
</description>
 
</description>
 
<types>
 
<types>
   <type>cocoaserver</type>
+
   <type>apcocoaserver</type>
 
</types>
 
</types>
<key>LattE</key>
+
<key>Latte</key>
 
<key>Count</key>
 
<key>Count</key>
<key>jbrandt</key>
+
<key>Latte.Count</key>
<key>skuehling</key>
+
<key>latte.Count</key>
<wiki-category>Package_latte</wiki-category>
+
<wiki-category>ApCoCoA-1:Package_latte</wiki-category>
 
</command>
 
</command>

Latest revision as of 10:09, 7 October 2020

This article is about a function from ApCoCoA-1.

Latte.Count

Counts the lattice points of a polyhedral given by a number of linear constraints.

Syntax

Latte.Count(Equations: LIST, LesserEq: LIST, GreaterEq: LIST):INT
Latte.Count(Equations: LIST, LesserEq: LIST, GreaterEq: LIST, Dil: INT):INT

Description

Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.

  • @param Equations: A list of linear polynomials, which are equivalent to the equality-part of the polyhedral constraints

  • @param LesserEq: A list of linear polynomials, which are equivalent to the lower or equal-part of the polyhedral constraints

  • @param GreaterEq: A list of linear polynomials, which are equivalent to the greater or equal-part of the polyhedral constraints

  • @return The number of lattice points in the given polyhedral P

The following parameter is optional:

  • @param Dil: Integer > 0, factor for dilation of the polyhedral P, to count the lattice points of the polyhedral n*P

IMPORTANT: If the given polyhedral is unbound, the output of LattE is zero, as for an empty polyhedral.

Example

Use S ::= QQ[x,y];
Equations := [];
LesserEq := [1/2*x-1, x+1/3y-1];
GreaterEq := [x,y];
Latte.Count(Equations, LesserEq, GreaterEq);

5
-------------------------------