Difference between revisions of "ApCoCoA-1:Latte.Count"
m (Bot: Category moved) |
m (insert version info) |
||
Line 1: | Line 1: | ||
+ | {{Version|1}} | ||
<command> | <command> | ||
<title>Latte.Count</title> | <title>Latte.Count</title> |
Latest revision as of 10:09, 7 October 2020
This article is about a function from ApCoCoA-1. |
Latte.Count
Counts the lattice points of a polyhedral given by a number of linear constraints.
Syntax
Latte.Count(Equations: LIST, LesserEq: LIST, GreaterEq: LIST):INT Latte.Count(Equations: LIST, LesserEq: LIST, GreaterEq: LIST, Dil: INT):INT
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.
@param Equations: A list of linear polynomials, which are equivalent to the equality-part of the polyhedral constraints
@param LesserEq: A list of linear polynomials, which are equivalent to the lower or equal-part of the polyhedral constraints
@param GreaterEq: A list of linear polynomials, which are equivalent to the greater or equal-part of the polyhedral constraints
@return The number of lattice points in the given polyhedral P
The following parameter is optional:
@param Dil: Integer > 0, factor for dilation of the polyhedral P, to count the lattice points of the polyhedral n*P
IMPORTANT: If the given polyhedral is unbound, the output of LattE is zero, as for an empty polyhedral.
Example
Use S ::= QQ[x,y]; Equations := []; LesserEq := [1/2*x-1, x+1/3y-1]; GreaterEq := [x,y]; Latte.Count(Equations, LesserEq, GreaterEq); 5 -------------------------------