Difference between revisions of "ApCoCoA-1:IML.Solve"
m (Bot: Category moved) |
m (insert version info) |
||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
+ | {{Version|1}} | ||
<command> | <command> | ||
<title>IML.Solve</title> | <title>IML.Solve</title> | ||
Line 43: | Line 44: | ||
</description> | </description> | ||
− | <see>Introduction to CoCoAServer</see> | + | <see>ApCoCoA-1:Introduction to CoCoAServer|Introduction to CoCoAServer</see> |
− | <see>LinAlg.Solve</see> | + | <see>ApCoCoA-1:LinAlg.Solve|LinAlg.Solve</see> |
− | <see>LinBox.Solve</see> | + | <see>ApCoCoA-1:LinBox.Solve|LinBox.Solve</see> |
− | <see>LinKer</see> | + | <see>ApCoCoA-1:LinKer|LinKer</see> |
<types> | <types> | ||
<type>matrix</type> | <type>matrix</type> |
Latest revision as of 10:09, 7 October 2020
This article is about a function from ApCoCoA-1. |
IML.Solve
Solves a system of linear equations.
Syntax
IML.Solve(M:MAT, B:MAT):MAT
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.
Let M and B be matrices defined over the ring of integers, a finite field or the field of rationals. This function tries to solve the linear equation system M*X = B by using the ApCoCoAServer supported by the IML library.
The return value will be a solution vector of the linear equation system or an empty matrix if no solution has been found.
@param M A matrix with components either of type INT, ZMOD or RAT.
@param B A matrix with components either of type INT, ZMOD or RAT.
@return A matrix X representing a solution vector of the linear equation system M*X = B if a solution exists or the empty matrix otherwise.
Example
Use ZZ/(19)[x]; M := BringIn(Mat([[1,3,4], [0,2,1]])); B := BringIn(Mat([[1], [2]])); IML.Solve(M, B); ------------------------------- Mat([ [-2 % 19], [1 % 19], [0 % 19] ]) -------------------------------
Example
Use QQ[x]; M := Mat([ [1,3,4], [0,2,1], [1,3,4] ]); B := Mat([ [1], [2], [0] ]); IML.Solve(M, B); ------------------------------- Mat([ [ ] ]) -------------------------------