Difference between revisions of "ApCoCoA-1:CharP.MBBasisF2"
m (insert version info) |
|||
(5 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
+ | {{Version|1}} | ||
<command> | <command> | ||
<title>CharP.MBBasis</title> | <title>CharP.MBBasis</title> | ||
− | <short_description> | + | <short_description>Computes a Border Basis of a given ideal over <tt>F_2</tt>. </short_description> |
<syntax> | <syntax> | ||
CharP.MBBasisF2(F:LIST):LIST | CharP.MBBasisF2(F:LIST):LIST | ||
Line 13: | Line 14: | ||
<item>@param <em>F:</em> List of polynomials.</item> | <item>@param <em>F:</em> List of polynomials.</item> | ||
<item>@param <em>NSol:</em> Number of <tt>F_2</tt> rational solutions. </item> | <item>@param <em>NSol:</em> Number of <tt>F_2</tt> rational solutions. </item> | ||
− | <item>@return A Border Basis of zero-dimensional radical ideal generated by the polynomials in F and the field polynomials. </item> | + | <item>@return A Border Basis of the zero-dimensional radical ideal generated by the polynomials in F and the field polynomials. </item> |
</itemize> | </itemize> | ||
Line 27: | Line 28: | ||
-- Then we compute a Border Basis with | -- Then we compute a Border Basis with | ||
CharP.MBBasisF2(F); | CharP.MBBasisF2(F); | ||
− | |||
− | |||
− | |||
The size of Matrix is: | The size of Matrix is: | ||
Line 64: | Line 62: | ||
x[1]x[2] + x[2]x[3] + x[2]x[4] + x[3]x[4] + x[1] + x[2] | x[1]x[2] + x[2]x[3] + x[2]x[4] + x[3]x[4] + x[1] + x[2] | ||
]; | ]; | ||
+ | |||
+ | NSol:=3; | ||
-- Solution is not unique i.e. [0, 1, 1, 1], [0, 0, 0, 0], and [1, 1, 1, 1] are solutions | -- Solution is not unique i.e. [0, 1, 1, 1], [0, 0, 0, 0], and [1, 1, 1, 1] are solutions | ||
− | + | -- Compute the solution with | |
− | -- | ||
CharP.MBBasisF2(F,NSol); | CharP.MBBasisF2(F,NSol); | ||
− | + | The size of Matrix is: | |
− | + | No. of Rows=4 | |
− | + | No. of Columns=9 | |
+ | The size of Matrix is: | ||
+ | No. of Rows=14 | ||
+ | No. of Columns=14 | ||
+ | The size of Matrix is: | ||
+ | No. of Rows=16 | ||
+ | No. of Columns=15 | ||
+ | [x[3]x[4] + x[4], x[1]x[4] + x[1], x[1]x[3] + x[1], x[1]x[2] + x[1], x[2]x[3]x[4] + x[4], x[1]x[2]x[4] + x[1]] | ||
</example> | </example> | ||
Line 79: | Line 85: | ||
</description> | </description> | ||
<seealso> | <seealso> | ||
− | <see>CharP. | + | <see>ApCoCoA-1:CharP.MXLSolve|CharP.MXLSolve</see> |
− | <see>Introduction to CoCoAServer</see> | + | <see>ApCoCoA-1:Introduction to CoCoAServer|Introduction to CoCoAServer</see> |
− | <see>Introduction to Groebner Basis in CoCoA</see> | + | <see>ApCoCoA-1:Introduction to Groebner Basis in CoCoA|Introduction to Groebner Basis in CoCoA</see> |
− | <see>CharP.IMNLASolve | + | <see>ApCoCoA-1:CharP.IMNLASolve|CharP.IMNLASolve</see> |
− | + | <see>ApCoCoA-1:CharP.IMBBasisF2|CharP.IMBBasisF2</see> | |
− | <see>CharP. | ||
− | |||
</seealso> | </seealso> | ||
Line 93: | Line 97: | ||
</types> | </types> | ||
− | <key>charP. | + | <key>charP.mbbasisf2</key> |
− | <key> | + | <key>mbbasisf2</key> |
<key>finite field</key> | <key>finite field</key> | ||
− | <wiki-category>Package_charP</wiki-category> | + | <wiki-category>ApCoCoA-1:Package_charP</wiki-category> |
</command> | </command> |
Latest revision as of 09:56, 7 October 2020
This article is about a function from ApCoCoA-1. |
CharP.MBBasis
Computes a Border Basis of a given ideal over F_2.
Syntax
CharP.MBBasisF2(F:LIST):LIST CharP.MBBasisF2(F:LIST, NSol: INT):LIST
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.
Let f_1, ... , f_m is a set of polynomials which generate a zero-dimensional ideal. This function computes a Border Basis of the zero-dimensional radical ideal generated by f_1, ... , f_m and the field polynomials. Furthermore, it uses mutant strategy to compute a U-stable span. If you want to use the second version with the parameter NSol, you need to provide the exact number of F_2 rational solutions. The first version is safe to use if you do not know the exact number of F_2 rational solutions.
@param F: List of polynomials.
@param NSol: Number of F_2 rational solutions.
@return A Border Basis of the zero-dimensional radical ideal generated by the polynomials in F and the field polynomials.
Example
Use Z/(2)[x[1..4]]; F:=[ x[1]x[2] + x[2]x[3] + x[2]x[4] + x[3]x[4] + x[1] + x[3] + 1, x[1]x[2] + x[1]x[3] + x[1]x[4] + x[3]x[4] + x[2] + x[3] + 1, x[1]x[2] + x[1]x[3] + x[2]x[3] + x[3]x[4] + x[1] + x[4] + 1, x[1]x[3] + x[2]x[3] + x[1]x[4] + x[2]x[4] + 1 ]; -- Then we compute a Border Basis with CharP.MBBasisF2(F); The size of Matrix is: No. of Rows=4 No. of Columns=11 The size of Matrix is: No. of Rows=8 No. of Columns=11 No. of mutants found =1 The size of Matrix is: No. of Rows=11 No. of Columns=11 No. of mutants found =2 The size of Matrix is: No. of Rows=16 No. of Columns=11 No. of mutants found =0 The size of Matrix is: No. of Rows=31 No. of Columns=15 No. of mutants found =0 [x[4] + 1, x[3], x[2] + 1, x[1]]
Example
Use Z/(2)[x[1..4]]; F:=[ x[2]x[3] + x[1]x[4] + x[2]x[4] + x[3]x[4] + x[1] + x[2] + x[3] + x[4], x[2]x[3] + x[2]x[4] + x[3]x[4] + x[2] + x[3] + x[4], x[1]x[2] + x[2]x[3] + x[2]x[4] + x[3]x[4] + x[1] + x[2], x[1]x[2] + x[2]x[3] + x[2]x[4] + x[3]x[4] + x[1] + x[2] ]; NSol:=3; -- Solution is not unique i.e. [0, 1, 1, 1], [0, 0, 0, 0], and [1, 1, 1, 1] are solutions -- Compute the solution with CharP.MBBasisF2(F,NSol); The size of Matrix is: No. of Rows=4 No. of Columns=9 The size of Matrix is: No. of Rows=14 No. of Columns=14 The size of Matrix is: No. of Rows=16 No. of Columns=15 [x[3]x[4] + x[4], x[1]x[4] + x[1], x[1]x[3] + x[1], x[1]x[2] + x[1], x[2]x[3]x[4] + x[4], x[1]x[2]x[4] + x[1]]
See also
Introduction to Groebner Basis in CoCoA