Difference between revisions of "ApCoCoA-1:CharP.GBasisF8"
From ApCoCoAWiki
m (insert version info) |
|||
(4 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
+ | {{Version|1}} | ||
<command> | <command> | ||
− | <title> | + | <title>CharP.GBasisF8</title> |
<short_description>Computing a Groebner Basis of a given ideal in <tt>F_8</tt>.</short_description> | <short_description>Computing a Groebner Basis of a given ideal in <tt>F_8</tt>.</short_description> | ||
<syntax> | <syntax> | ||
− | + | CharP.GBasisF8(Ideal:IDEAL):LIST | |
</syntax> | </syntax> | ||
<description> | <description> | ||
Line 28: | Line 29: | ||
------------------------------- | ------------------------------- | ||
I:=Ideal(x-y^2,x^2+xy,y^3); | I:=Ideal(x-y^2,x^2+xy,y^3); | ||
− | + | CharP.GBasisF8(I); | |
-- WARNING: Coeffs are not in a field | -- WARNING: Coeffs are not in a field | ||
-- GBasis-related computations could fail to terminate or be wrong | -- GBasis-related computations could fail to terminate or be wrong | ||
Line 40: | Line 41: | ||
<seealso> | <seealso> | ||
− | <see>GBasis</see> | + | <see>ApCoCoA-1:GBasis|GBasis</see> |
− | <see>Introduction to CoCoAServer</see> | + | <see>ApCoCoA-1:Introduction to CoCoAServer|Introduction to CoCoAServer</see> |
− | <see>Introduction to Groebner Basis in CoCoA</see> | + | <see>ApCoCoA-1:Introduction to Groebner Basis in CoCoA|Introduction to Groebner Basis in CoCoA</see> |
− | <see> | + | <see>ApCoCoA-1:CharP.GBasisF2|CharP.GBasisF2</see> |
− | <see> | + | <see>ApCoCoA-1:CharP.GBasisF4|CharP.GBasisF4</see> |
− | <see> | + | <see>ApCoCoA-1:CharP.GBasisF16|CharP.GBasisF16</see> |
− | <see> | + | <see>ApCoCoA-1:CharP.GBasisF32|CharP.GBasisF32</see> |
− | <see> | + | <see>ApCoCoA-1:CharP.GBasisF64|CharP.GBasisF64</see> |
− | <see> | + | <see>ApCoCoA-1:CharP.GBasisF128|CharP.GBasisF128</see> |
− | <see> | + | <see>ApCoCoA-1:CharP.GBasisF256|CharP.GBasisF256</see> |
− | <see> | + | <see>ApCoCoA-1:CharP.GBasisF512|CharP.GBasisF512</see> |
− | <see> | + | <see>ApCoCoA-1:CharP.GBasisF1024|CharP.GBasisF1024</see> |
− | <see> | + | <see>ApCoCoA-1:CharP.GBasisF2048|CharP.GBasisF2048</see> |
− | <see> | + | <see>ApCoCoA-1:CharP.GBasisModSquares|CharP.GBasisModSquares</see> |
− | <see>Representation of finite fields</see> | + | <see>ApCoCoA-1:Representation of finite fields|Representation of finite fields</see> |
</seealso> | </seealso> | ||
Line 64: | Line 65: | ||
<key>GBasisF8</key> | <key>GBasisF8</key> | ||
− | <key> | + | <key>charP.GBasisF8</key> |
<key>finite field</key> | <key>finite field</key> | ||
− | <wiki-category> | + | <wiki-category>ApCoCoA-1:Package_charP</wiki-category> |
</command> | </command> |
Latest revision as of 09:55, 7 October 2020
This article is about a function from ApCoCoA-1. |
CharP.GBasisF8
Computing a Groebner Basis of a given ideal in F_8.
Syntax
CharP.GBasisF8(Ideal:IDEAL):LIST
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.
This command computes a Groebner basis in the field F_8 = (Z/(2))[x]/(x^3 + x +1).
@param Ideal An Ideal in a Ring over Z, where the elements 0,...,7 represent the elements of the field F_8. For short, the binary representation of the number represents the coefficient vector if the polynomial in the field, e.g. 11 = 8 + 2 + 1 = 2^3 + 2^1 + 2^0. So the number 11 corresponds to the polynomial x^3 + x + 1.
@return A Groebner Basis of the given ideal.
Example
Use R::=QQ[x,y,z]; I:=Ideal(x-y^2,x^2+xy,y^3); GBasis(I); [x^2 + xy, -y^2 + x, -xy] ------------------------------- Use Z::=ZZ[x,y,z]; -- WARNING: Coeffs are not in a field -- GBasis-related computations could fail to terminate or be wrong ------------------------------- I:=Ideal(x-y^2,x^2+xy,y^3); CharP.GBasisF8(I); -- WARNING: Coeffs are not in a field -- GBasis-related computations could fail to terminate or be wrong -- CoCoAServer: computing Cpu Time = 0 ------------------------------- [y^2 + 4x, x^2, xy] -------------------------------
See also
Introduction to Groebner Basis in CoCoA
Representation of finite fields