Difference between revisions of "ApCoCoA-1:BBSGen.Wmat"

From ApCoCoAWiki
m (insert version info)
 
(10 intermediate revisions by 5 users not shown)
Line 1: Line 1:
 +
{{Version|1}}
 
<command>
 
<command>
   <title>BBSGen.Wmat</title>
+
   <title>BBSGen.WMat</title>
 
   <short_description>This function computes the Weight Matrix with respect to the arrow grading. </short_description>
 
   <short_description>This function computes the Weight Matrix with respect to the arrow grading. </short_description>
 
    
 
    
 
<syntax>
 
<syntax>
WMat(OO,BO,N):
+
BBSGen.WMat(OO,BO,N):
WMat(OO:LIST,BO:LIST,N:INTEGER):MATRIX
+
BBSGen.WMat(OO:LIST,BO:LIST,N:INTEGER):MATRIX
  
 
</syntax>
 
</syntax>
 
   <description>
 
   <description>
Let c_ij be an indeterminate from the Ring K[c_ij]. Let OO be an order ideal and BO be its border. Let Mu:=Len(OO) and Nu:=Len(BO). Let m be an integer that is equal to Mu*Nu.  The ring K[c_ij] is Z^m-graded if we define  deg_{W}(c_ij)=log(b_j)-log(t_i)=(u_1,...,u_m)=u\in Z^m,  where W is the grading matrix.
+
Let c_ij be an indeterminate from the Ring K[c_ij]. Let OO be an order ideal and BO be its border. Let Mu:=Len(OO) and Nu:=Len(BO). Let m be an integer that is equal to Mu*Nu.  The ring K[c_ij] is Z^m-graded if we define  deg_{W}(c_ij)=log(b_j)-log(t_i)=(u_1,...,u_m)=u in Z^m,  where W is the grading matrix.
We shall name this  grading the arrow grading. The Function <ref>BBSGen.WMat(OO,BO,N)</ref> computes the grading matrix with respect to this grading matrix.
+
We shall name this  grading the arrow grading. The Function <tt>BBSGen.Wmat(OO,BO,N)</tt> computes the grading matrix with respect to this grading.
  
 
<itemize>
 
<itemize>
Line 25: Line 26:
 
N:=Len(Indets());
 
N:=Len(Indets());
 
----------------------
 
----------------------
W:=Wmat(OO,BO,N);  
+
W:=BBSGen.Wmat(OO,BO,N);  
 
W;
 
W;
  
Line 38: Line 39:
 
   </description>
 
   </description>
 
   <types>
 
   <types>
     <type>borderbasis</type>
+
     <type>bbsmingensys</type>
     <type>ideal</type>
+
     <type>Mat</type>
 
     <type>apcocoaserver</type>
 
     <type>apcocoaserver</type>
 
   </types>
 
   </types>
Line 46: Line 47:
 
   <key>BBSGen.Wmat</key>
 
   <key>BBSGen.Wmat</key>
 
   <key>bbsmingensys.Wmat</key>
 
   <key>bbsmingensys.Wmat</key>
   <wiki-category>Package_bbsmingensys</wiki-category>
+
   <wiki-category>ApCoCoA-1:Package_bbsmingensys</wiki-category>
 
</command>
 
</command>

Latest revision as of 09:52, 7 October 2020

This article is about a function from ApCoCoA-1.

BBSGen.WMat

This function computes the Weight Matrix with respect to the arrow grading.

Syntax

BBSGen.WMat(OO,BO,N):
BBSGen.WMat(OO:LIST,BO:LIST,N:INTEGER):MATRIX

Description

Let c_ij be an indeterminate from the Ring K[c_ij]. Let OO be an order ideal and BO be its border. Let Mu:=Len(OO) and Nu:=Len(BO). Let m be an integer that is equal to Mu*Nu. The ring K[c_ij] is Z^m-graded if we define deg_{W}(c_ij)=log(b_j)-log(t_i)=(u_1,...,u_m)=u in Z^m, where W is the grading matrix.

We shall name this grading the arrow grading. The Function BBSGen.Wmat(OO,BO,N) computes the grading matrix with respect to this grading.

  • @param The order ideal OO, the border BO and the number of indeterminates of the polynomial ring K[x_1,...,x_N].

  • @return Weight Matrix.


Example

Use R::=QQ[x[1..2]];
OO:=$apcocoa/borderbasis.Box([1,1]); 
BO:=$apcocoa/borderbasis.Border(OO);
N:=Len(Indets());
----------------------
W:=BBSGen.Wmat(OO,BO,N); 
W;

Mat([
  [0, 2, 1, 2, 0, 2, 1, 2, -1, 1, 0, 1, -1, 1, 0, 1],
  [2, 0, 2, 1, 1, -1, 1, 0, 2, 0, 2, 1, 1, -1, 1, 0]
])