Difference between revisions of "ApCoCoA-1:BBSGen.Wmat"

From ApCoCoAWiki
m (insert version info)
 
(24 intermediate revisions by 5 users not shown)
Line 1: Line 1:
 +
{{Version|1}}
 
<command>
 
<command>
<title>BBSGens.Wmat</title>
+
  <title>BBSGen.WMat</title>
   <short_description>This function computes the weight matrix with respect to the arrow grading. </short_description>
+
   <short_description>This function computes the Weight Matrix with respect to the arrow grading. </short_description>
<syntax>BBSGens.WMat(OO:LIST,BO:LIST,N:INTEGER):MATRIX</syntax>
+
 
<description>
+
<syntax>
This command computes the degree of the indeterminates from <tt>K[c_{ij}]</tt> with respect to the arrow grading.   The  coloumns  of <ref>BBSGens.Wmat</ref><tt>(OO,BO,N)</tt> give the degrees of <tt>{c_{11},..c_{1Nu},...,c_{MuNu}}</tt> with respect to the arrow grading, where Mu is the number of elements in <tt>OO</tt> and <tt>Nu</tt> is the number of elements from <tt>BO</tt>.
+
BBSGen.WMat(OO,BO,N):
 +
BBSGen.WMat(OO:LIST,BO:LIST,N:INTEGER):MATRIX
  
 +
</syntax>
 +
  <description>
 +
Let c_ij be an indeterminate from the Ring K[c_ij]. Let OO be an order ideal and BO be its border. Let Mu:=Len(OO) and Nu:=Len(BO). Let m be an integer that is equal to Mu*Nu.  The ring K[c_ij] is Z^m-graded if we define  deg_{W}(c_ij)=log(b_j)-log(t_i)=(u_1,...,u_m)=u in Z^m,  where W is the grading matrix.
 +
We shall name this  grading the arrow grading. The Function <tt>BBSGen.Wmat(OO,BO,N)</tt> computes the grading matrix with respect to this grading.
  
 
<itemize>
 
<itemize>
   <item>@param <em>OO</em> A list of terms representing an order ideal.</item>
+
   <item>@param The order ideal OO, the border BO and the number of indeterminates of the polynomial ring K[x_1,...,x_N].
  <item>@param <em>BO</em> A list of terms representing the border.</item>
+
</item>
<item>@param <em>N</em> The number of elements of the polynomial ring <tt>K[x_1,...x_n]</tt>.</item>
+
   <item>@return Weight Matrix.</item>
   <item>@return Returns the weight matrix with respect to the arrow grading.</item>
 
 
</itemize>
 
</itemize>
  
 +
 
<example>
 
<example>
 
Use R::=QQ[x[1..2]];
 
Use R::=QQ[x[1..2]];
OO:=BB.Box([1,1]);  
+
OO:=$apcocoa/borderbasis.Box([1,1]);  
BO:=BB.Border(OO);
+
BO:=$apcocoa/borderbasis.Border(OO);
 
N:=Len(Indets());
 
N:=Len(Indets());
 
----------------------
 
----------------------
 
W:=BBSGen.Wmat(OO,BO,N);  
 
W:=BBSGen.Wmat(OO,BO,N);  
 
W;
 
W;
 +
 
Mat([
 
Mat([
 
   [0, 2, 1, 2, 0, 2, 1, 2, -1, 1, 0, 1, -1, 1, 0, 1],
 
   [0, 2, 1, 2, 0, 2, 1, 2, -1, 1, 0, 1, -1, 1, 0, 1],
   [2, 0, 2, 1, 1, -1, 1, 0, 2, 0, 2, 1, 1, -1, 1, 0]])
+
   [2, 0, 2, 1, 1, -1, 1, 0, 2, 0, 2, 1, 1, -1, 1, 0]
 +
])
 +
 
 +
 
 
</example>
 
</example>
 +
 
   </description>
 
   </description>
 +
  <types>
 
     <type>bbsmingensys</type>
 
     <type>bbsmingensys</type>
<key>Wmat</key>
+
    <type>Mat</type>
 +
    <type>apcocoaserver</type>
 +
  </types>
 +
 
 +
  <key>Wmat</key>
 
   <key>BBSGen.Wmat</key>
 
   <key>BBSGen.Wmat</key>
 
   <key>bbsmingensys.Wmat</key>
 
   <key>bbsmingensys.Wmat</key>
   <wiki-category>Package_bbsmingensys</wiki-category>
+
   <wiki-category>ApCoCoA-1:Package_bbsmingensys</wiki-category>
 
</command>
 
</command>

Latest revision as of 09:52, 7 October 2020

This article is about a function from ApCoCoA-1.

BBSGen.WMat

This function computes the Weight Matrix with respect to the arrow grading.

Syntax

BBSGen.WMat(OO,BO,N):
BBSGen.WMat(OO:LIST,BO:LIST,N:INTEGER):MATRIX

Description

Let c_ij be an indeterminate from the Ring K[c_ij]. Let OO be an order ideal and BO be its border. Let Mu:=Len(OO) and Nu:=Len(BO). Let m be an integer that is equal to Mu*Nu. The ring K[c_ij] is Z^m-graded if we define deg_{W}(c_ij)=log(b_j)-log(t_i)=(u_1,...,u_m)=u in Z^m, where W is the grading matrix.

We shall name this grading the arrow grading. The Function BBSGen.Wmat(OO,BO,N) computes the grading matrix with respect to this grading.

  • @param The order ideal OO, the border BO and the number of indeterminates of the polynomial ring K[x_1,...,x_N].

  • @return Weight Matrix.


Example

Use R::=QQ[x[1..2]];
OO:=$apcocoa/borderbasis.Box([1,1]); 
BO:=$apcocoa/borderbasis.Border(OO);
N:=Len(Indets());
----------------------
W:=BBSGen.Wmat(OO,BO,N); 
W;

Mat([
  [0, 2, 1, 2, 0, 2, 1, 2, -1, 1, 0, 1, -1, 1, 0, 1],
  [2, 0, 2, 1, 1, -1, 1, 0, 2, 0, 2, 1, 1, -1, 1, 0]
])