Difference between revisions of "ApCoCoA-1:BBSGen.TraceSyzStep"
From ApCoCoAWiki
m (insert version info) |
|||
(16 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
+ | {{Version|1}} | ||
<command> | <command> | ||
<title>BBSGen.TraceSyzStep</title> | <title>BBSGen.TraceSyzStep</title> | ||
− | <short_description> | + | <short_description>This function computes the trace polynomial T_{Pi,X} with respect to a given term Pi and a variable from ring K[x_1,...,x_N].(see <ref>ApCoCoA-1:BBSGen.TraceSyzFull|BBSGen.TraceSyzFull</ref>) |
</short_description> | </short_description> | ||
<syntax> | <syntax> | ||
− | + | BBSGen.TraceSyzStep(Pi,X,OO,BO,N); | |
− | + | BBSGen.TraceSyzStep(Pi:POLY,X:POLY,OO:LIST,BO:LIST,N:INTEGER):LIST | |
</syntax> | </syntax> | ||
<description> | <description> | ||
− | + | Note the following: | |
− | + | The chosen variable must be a divisor of the term Pi. | |
− | + | Pi must be a product of at least two different indeterminates otherwise the result is 0. | |
+ | |||
<itemize> | <itemize> | ||
− | <item>@param The | + | <item>@param The term Pi from K[x_1,...,x_N], the distinguished variable of choice from {x_1,...,x_N}, order ideal OO, border BO, the number of indeterminates of the polynomial ring K[x_1,...,x_N]. |
</item> | </item> | ||
− | <item>@return Trace | + | <item>@return Trace polynomial T_{Pi,X} with respect to a term Pi and a variable X.</item> |
</itemize> | </itemize> | ||
Line 24: | Line 26: | ||
Use R::=QQ[x[1..2]]; | Use R::=QQ[x[1..2]]; | ||
− | OO:= | + | OO:=$apcocoa/borderbasis.Box([1,1]); |
− | BO:= | + | BO:=$apcocoa/borderbasis.Border(OO); |
Mu:=Len(OO); | Mu:=Len(OO); | ||
Nu:=Len(BO); | Nu:=Len(BO); | ||
− | + | N:=Len(Indets()); | |
− | + | Pi:=x[1]^2x[2]; | |
X:=x[1]; ------------Choice of the Indeterminate | X:=x[1]; ------------Choice of the Indeterminate | ||
Line 35: | Line 37: | ||
Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]; | Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]; | ||
− | BBSGen.TraceSyzStep( | + | BBSGen.TraceSyzStep(Pi,X,OO,BO,N); |
− | + | c[1,2]t[1,2,3,1] + c[2,2]t[1,2,3,2] + | |
− | + | c[3,2]t[1,2,3,3] + c[4,2]t[1,2,3,4] + | |
− | c[3,4]t[1,2,4,3] + c[4,4]t[1,2,4,4] + | + | c[1,4]t[1,2,4,1] + c[2,4]t[1,2,4,2] + |
+ | c[3,4]t[1,2,4,3] + c[4,4]t[1,2,4,4] + | ||
t[1,2,1,3] + t[1,2,2,4] | t[1,2,1,3] + t[1,2,2,4] | ||
Line 46: | Line 49: | ||
</description> | </description> | ||
<types> | <types> | ||
− | <type> | + | <type>bbsmingensys</type> |
− | <type> | + | <type>poly</type> |
<type>apcocoaserver</type> | <type>apcocoaserver</type> | ||
</types> | </types> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | <key> | + | <see>ApCoCoA-1:BBSGen.Wmat|BBSGen.Wmat</see> |
− | <key>BBSGen. | + | <see>ApCoCoA-1:BBSGen.TraceSyzLin|BBSGen.TraceSyzLin</see> |
− | <key>bbsmingensys. | + | <see>ApCoCoA-1:BBSGen.TraceSyzLinStep|BBSGen.TraceSyzLinStep</see> |
− | <wiki-category>Package_bbsmingensys</wiki-category> | + | <see>ApCoCoA-1:BBSGen.TraceSyzFull|BBSGen.TraceSyzFull</see> |
+ | |||
+ | <key>TraceSyzStep</key> | ||
+ | <key>BBSGen.TraceSyzStep</key> | ||
+ | <key>bbsmingensys.TraceSyzStep</key> | ||
+ | <wiki-category>ApCoCoA-1:Package_bbsmingensys</wiki-category> | ||
</command> | </command> |
Latest revision as of 09:52, 7 October 2020
This article is about a function from ApCoCoA-1. |
BBSGen.TraceSyzStep
This function computes the trace polynomial T_{Pi,X} with respect to a given term Pi and a variable from ring K[x_1,...,x_N].(see BBSGen.TraceSyzFull)
Syntax
BBSGen.TraceSyzStep(Pi,X,OO,BO,N); BBSGen.TraceSyzStep(Pi:POLY,X:POLY,OO:LIST,BO:LIST,N:INTEGER):LIST
Description
Note the following: The chosen variable must be a divisor of the term Pi. Pi must be a product of at least two different indeterminates otherwise the result is 0.
@param The term Pi from K[x_1,...,x_N], the distinguished variable of choice from {x_1,...,x_N}, order ideal OO, border BO, the number of indeterminates of the polynomial ring K[x_1,...,x_N].
@return Trace polynomial T_{Pi,X} with respect to a term Pi and a variable X.
Example
Use R::=QQ[x[1..2]]; OO:=$apcocoa/borderbasis.Box([1,1]); BO:=$apcocoa/borderbasis.Border(OO); Mu:=Len(OO); Nu:=Len(BO); N:=Len(Indets()); Pi:=x[1]^2x[2]; X:=x[1]; ------------Choice of the Indeterminate Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]; BBSGen.TraceSyzStep(Pi,X,OO,BO,N); c[1,2]t[1,2,3,1] + c[2,2]t[1,2,3,2] + c[3,2]t[1,2,3,3] + c[4,2]t[1,2,3,4] + c[1,4]t[1,2,4,1] + c[2,4]t[1,2,4,2] + c[3,4]t[1,2,4,3] + c[4,4]t[1,2,4,4] + t[1,2,1,3] + t[1,2,2,4] -------------------------------