Difference between revisions of "ApCoCoA-1:BBSGen.TraceSyzLinStep"
From ApCoCoAWiki
m (insert version info) |
|||
(3 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
+ | {{Version|1}} | ||
<command> | <command> | ||
<title>BBSGen.TraceSyzLinStep</title> | <title>BBSGen.TraceSyzLinStep</title> | ||
− | <short_description>This function computes the K[c]-linear summand of the trace polynomial T_{Pi,X} with respect to a given term Pi and a variable from ring K[x_1,...,x_N].(see <ref>BBSGen.TraceSyzFull</ref>) | + | <short_description>This function computes the K[c]-linear summand of the trace polynomial T_{Pi,X} with respect to a given term Pi and a variable from ring K[x_1,...,x_N].(see <ref>ApCoCoA-1:BBSGen.TraceSyzFull|BBSGen.TraceSyzFull</ref>) |
</short_description> | </short_description> | ||
Line 51: | Line 52: | ||
</types> | </types> | ||
− | <see>BBSGen.Wmat</see> | + | <see>ApCoCoA-1:BBSGen.Wmat|BBSGen.Wmat</see> |
− | <see>BBSGen.TraceSyzLin</see> | + | <see>ApCoCoA-1:BBSGen.TraceSyzLin|BBSGen.TraceSyzLin</see> |
− | <see>BBSGen.TraceSyzStep</see> | + | <see>ApCoCoA-1:BBSGen.TraceSyzStep|BBSGen.TraceSyzStep</see> |
− | <see>BBSGen.TraceSyzFull</see> | + | <see>ApCoCoA-1:BBSGen.TraceSyzFull|BBSGen.TraceSyzFull</see> |
<key>TraceSyzLinStep</key> | <key>TraceSyzLinStep</key> | ||
<key>BBSGen.TraceSyzLinStep</key> | <key>BBSGen.TraceSyzLinStep</key> | ||
<key>bbsmingensys.TraceSyzLinStep</key> | <key>bbsmingensys.TraceSyzLinStep</key> | ||
− | <wiki-category>Package_bbsmingensys</wiki-category> | + | <wiki-category>ApCoCoA-1:Package_bbsmingensys</wiki-category> |
</command> | </command> |
Latest revision as of 09:51, 7 October 2020
This article is about a function from ApCoCoA-1. |
BBSGen.TraceSyzLinStep
This function computes the K[c]-linear summand of the trace polynomial T_{Pi,X} with respect to a given term Pi and a variable from ring K[x_1,...,x_N].(see BBSGen.TraceSyzFull)
Syntax
BBSGen.TraceSyzLinStep(Pi,X,OO,BO,N); BBSGen.TraceSyzLinStep(Pi:POLY,X:POLY,OO:LIST,BO:LIST,N:INTEGER):LIST
Description
Note the following: The chosen variable must be a divisor of the term Pi. Pi must be a product of at least two different indeterminates otherwise the result is 0.
@param The term Pi, the distinguished variable of choice that divides Pi, order ideal OO, border BO, the number of Indeterminates of the polynomial ring K[x_1,...,x_N].
@return K[c]-linear summand of the trace polynomial with respect to Pi and the variable X.
Example
Use R::=QQ[x[1..2]]; OO:=$apcocoa/borderbasis.Box([1,1]); BO:=$apcocoa/borderbasis.Border(OO); Mu:=Len(OO); Nu:=Len(BO); N:=Len(Indets()); Pi:=x[1]^2x[2];----Term X:=x[1]; ------------Choice of the Variable Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]; BBSGen.TraceSyzLinStep(Pi,X,OO,BO,N); t[1,2,1,3] + t[1,2,2,4] -------------------------------