Difference between revisions of "ApCoCoA-1:BBSGen.TraceSyzLinStep"

From ApCoCoAWiki
(New page: <command> <title>BBSGen.TraceSyzStep</title> <short_description>: This function only computes the K[c_ij-]linear summand of trace syzygy polynomial for the degree of the given monomi...)
 
m (insert version info)
 
(10 intermediate revisions by 4 users not shown)
Line 1: Line 1:
 +
{{Version|1}}
 
<command>
 
<command>
   <title>BBSGen.TraceSyzStep</title>
+
   <title>BBSGen.TraceSyzLinStep</title>
   <short_description>: This function only computes the  K[c_ij-]linear summand of  trace syzygy polynomial for the degree of the given monomial.  
+
   <short_description>This function computes the  K[c]-linear summand of the trace polynomial T_{Pi,X}  with respect to a  given term Pi and a variable from ring K[x_1,...,x_N].(see <ref>ApCoCoA-1:BBSGen.TraceSyzFull|BBSGen.TraceSyzFull</ref>)
 
</short_description>
 
</short_description>
 
    
 
    
 
<syntax>
 
<syntax>
  
TraceSyzLin(OO,BO,N);
+
BBSGen.TraceSyzLinStep(Pi,X,OO,BO,N);
TraceSyzLin(OO:LIST,BO:LIST,N:INTEGER):POLY
+
BBSGen.TraceSyzLinStep(Pi:POLY,X:POLY,OO:LIST,BO:LIST,N:INTEGER):LIST
 
</syntax>
 
</syntax>
 
   <description>
 
   <description>
 
+
  Note the following:
Let  Tau^kl_ij :=t[k,l,i,j] be the (i,j) ^th entry of matrix the operation  [A_k,A_l]. The result of the Trace Syzygy computation is K[c]-linear combination of  Tau^kl_ij    that is equal to 0. This function  computes  only the K[c_ij]-linear summand of the  trace syzygy polynomial for the degree of the given monomial.
+
  The chosen variable must be a divisor of the term Pi.
 +
  Pi must be a product of at least two different indeterminates otherwise the result is 0.  
 +
 
  
  
 
<itemize>
 
<itemize>
   <item>@param  The Monomial Mon, the distinguished indterminate of choice,  order ideal OO, border BO, the number of Indeterminates of the Polynomial.
+
   <item>@param  The term Pi, the distinguished variable of choice that divides Pi,  order ideal OO, border BO, the number of Indeterminates of the polynomial ring K[x_1,...,x_N].  
 
</item>
 
</item>
   <item>@return  K[c_ij]-linear summand of the  trace syzygy polynomial which is computed by help of the given monomial.</item>
+
   <item>@return  K[c]-linear summand of the  trace polynomial with respect to Pi and the variable  X.</item>
 
</itemize>
 
</itemize>
  
Line 24: Line 27:
 
Use R::=QQ[x[1..2]];
 
Use R::=QQ[x[1..2]];
  
OO:=BB.Box([1,1]);
+
OO:=$apcocoa/borderbasis.Box([1,1]);
BO:=BB.Border(OO);
+
BO:=$apcocoa/borderbasis.Border(OO);
 
Mu:=Len(OO);
 
Mu:=Len(OO);
 
Nu:=Len(BO);
 
Nu:=Len(BO);
 +
N:=Len(Indets());
 +
Pi:=x[1]^2x[2];----Term
  
Mon:=x[1]^2x[2];--------Target Monomial
+
X:=x[1];  ------------Choice of the Variable
 
 
X:=x[1];  ------------Choice of the Indeterminate
 
  
 
Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]];  
 
Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]];  
 
   
 
   
  BBSGen.TraceSyzLinStep(Mon,X,OO,BO,N);
+
  BBSGen.TraceSyzLinStep(Pi,X,OO,BO,N);
 
    
 
    
 
   
 
   
  t[1,2,1,3] + t[1,2,2,4]
+
  t[1,2,1,3] + t[1,2,2,4]  
  
 
-------------------------------
 
-------------------------------
Line 44: Line 47:
 
   </description>
 
   </description>
 
   <types>
 
   <types>
     <type>borderbasis</type>
+
     <type>bbsmingensys</type>
     <type>ideal</type>
+
     <type>poly</type>
 
     <type>apcocoaserver</type>
 
     <type>apcocoaserver</type>
 
   </types>
 
   </types>
<see>BB.Border</see>
 
  <see>BB.Box</see>
 
<see>BBSGen.Wmat</see>
 
<see>BBSGen.TraceSyzLin</see>
 
<see>BBSGen.TraceSyzStep</see>
 
<see>BBSGen.TraceSyzFull</see>
 
  
   <key>Wmat</key>
+
<see>ApCoCoA-1:BBSGen.Wmat|BBSGen.Wmat</see>
   <key>BBSGen.Wmat</key>
+
<see>ApCoCoA-1:BBSGen.TraceSyzLin|BBSGen.TraceSyzLin</see>
   <key>bbsmingensys.Wmat</key>
+
<see>ApCoCoA-1:BBSGen.TraceSyzStep|BBSGen.TraceSyzStep</see>
   <wiki-category>Package_bbsmingensys</wiki-category>
+
<see>ApCoCoA-1:BBSGen.TraceSyzFull|BBSGen.TraceSyzFull</see>
 +
 
 +
   <key>TraceSyzLinStep</key>
 +
   <key>BBSGen.TraceSyzLinStep</key>
 +
   <key>bbsmingensys.TraceSyzLinStep</key>
 +
   <wiki-category>ApCoCoA-1:Package_bbsmingensys</wiki-category>
 
</command>
 
</command>

Latest revision as of 09:51, 7 October 2020

This article is about a function from ApCoCoA-1.

BBSGen.TraceSyzLinStep

This function computes the K[c]-linear summand of the trace polynomial T_{Pi,X} with respect to a given term Pi and a variable from ring K[x_1,...,x_N].(see BBSGen.TraceSyzFull)

Syntax

BBSGen.TraceSyzLinStep(Pi,X,OO,BO,N);
BBSGen.TraceSyzLinStep(Pi:POLY,X:POLY,OO:LIST,BO:LIST,N:INTEGER):LIST

Description

 Note the following:
 The chosen variable must be a divisor of the term Pi.
 Pi must be a product of at least two different indeterminates otherwise the result is 0. 
 


  • @param The term Pi, the distinguished variable of choice that divides Pi, order ideal OO, border BO, the number of Indeterminates of the polynomial ring K[x_1,...,x_N].

  • @return K[c]-linear summand of the trace polynomial with respect to Pi and the variable X.


Example

Use R::=QQ[x[1..2]];

OO:=$apcocoa/borderbasis.Box([1,1]);
BO:=$apcocoa/borderbasis.Border(OO);
Mu:=Len(OO);
Nu:=Len(BO);
N:=Len(Indets());
Pi:=x[1]^2x[2];----Term

X:=x[1];   ------------Choice of the Variable

Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]; 
 
 BBSGen.TraceSyzLinStep(Pi,X,OO,BO,N);
  
 
 t[1,2,1,3] + t[1,2,2,4] 

-------------------------------


BBSGen.Wmat

BBSGen.TraceSyzLin

BBSGen.TraceSyzStep

BBSGen.TraceSyzFull