Difference between revisions of "ApCoCoA-1:BBSGen.NonTriv"
From ApCoCoAWiki
m (insert version info) |
|||
(6 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
+ | {{Version|1}} | ||
<command> | <command> | ||
<title>BBSGen.NonTriv</title> | <title>BBSGen.NonTriv</title> | ||
Line 14: | Line 15: | ||
<itemize> | <itemize> | ||
− | <item>@para Order ideal OO, border BO, the number of indeterminates of the polynomial ring K[x_1,...,x_N] and the weight matrix(see <ref>BBSGen.Wmat</ref>). </item> | + | <item>@para Order ideal OO, border BO, the number of indeterminates of the polynomial ring K[x_1,...,x_N] and the weight matrix(see <ref>ApCoCoA-1:BBSGen.Wmat|BBSGen.Wmat</ref>). </item> |
<item>@return List of non-trivial generators of the vanishing ideal of the border basis scheme. </item> | <item>@return List of non-trivial generators of the vanishing ideal of the border basis scheme. </item> | ||
</itemize> | </itemize> | ||
Line 94: | Line 95: | ||
</types> | </types> | ||
− | < | + | <see>ApCoCoA-1:BBSGen.Wmat|BBSGen.Wmat</see> |
− | <see>BBSGen.Poldeg</see> | + | <see>ApCoCoA-1:BBSGen.Poldeg|BBSGen.Poldeg</see> |
<key>BBSGen.NonTriv</key> | <key>BBSGen.NonTriv</key> | ||
<key>NonTriv</key> | <key>NonTriv</key> | ||
− | <wiki-category>Package_bbsmingensys</wiki-category> | + | <wiki-category>ApCoCoA-1:Package_bbsmingensys</wiki-category> |
</command> | </command> |
Latest revision as of 09:51, 7 October 2020
This article is about a function from ApCoCoA-1. |
BBSGen.NonTriv
This function computes the non-trivial polynomials of the generating set of the vanishing ideal of a border basis scheme.
Syntax
BBSGen.NonTriv(OO,BO,W,N); BBSGen.NonTriv(OO:LIST,BO:LIST,W:MATRIX,N:INT):LIST;
Description
@para Order ideal OO, border BO, the number of indeterminates of the polynomial ring K[x_1,...,x_N] and the weight matrix(see BBSGen.Wmat).
@return List of non-trivial generators of the vanishing ideal of the border basis scheme.
Example
Use R::=QQ[x[1..2]]; OO:=$apcocoa/borderbasis.Box([1,1]); BO:=$apcocoa/borderbasis.Border(OO); Mu:=Len(OO); Nu:=Len(BO); N:=Len(Indets()); W:=BBSGen.Wmat(OO,BO,N); Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]; Set Indentation; BBSGen.NonTriv(OO,BO,W,N); [ [ t[1,2,1,2], c[1,2]c[3,1] + c[1,4]c[4,1] - c[1,3], R :: Vector(1, 2)], [ t[1,2,1,3], -c[1,1]c[2,2] - c[1,3]c[4,2] + c[1,4], R :: Vector(2, 1)], [ t[1,2,1,4], -c[1,1]c[2,4] + c[1,2]c[3,3] + c[1,4]c[4,3] - c[1,3]c[4,4], R :: Vector(2, 2)], [ t[1,2,2,2], c[2,2]c[3,1] + c[2,4]c[4,1] - c[2,3], R :: Vector(1, 1)], [ t[1,2,2,3], -c[2,1]c[2,2] - c[2,3]c[4,2] - c[1,2] + c[2,4], R :: Vector(2, 0)], [ t[1,2,2,4], -c[2,1]c[2,4] + c[2,2]c[3,3] + c[2,4]c[4,3] - c[2,3]c[4,4] - c[1,4], R :: Vector(2, 1)], [ t[1,2,3,2], c[3,1]c[3,2] + c[3,4]c[4,1] + c[1,1] - c[3,3], R :: Vector(0, 2)], [ t[1,2,3,3], -c[2,2]c[3,1] - c[3,3]c[4,2] + c[3,4], R :: Vector(1, 1)], [ t[1,2,3,4], -c[2,4]c[3,1] + c[3,2]c[3,3] + c[3,4]c[4,3] - c[3,3]c[4,4] + c[1,3], R :: Vector(1, 2)], [ t[1,2,4,2], c[3,1]c[4,2] + c[4,1]c[4,4] + c[2,1] - c[4,3], R :: Vector(0, 1)], [ t[1,2,4,3], -c[2,2]c[4,1] - c[4,2]c[4,3] - c[3,2] + c[4,4], R :: Vector(1, 0)], [ t[1,2,4,4], -c[2,4]c[4,1] + c[3,3]c[4,2] + c[2,3] - c[3,4], R :: Vector(1, 1)]]