Difference between revisions of "ApCoCoA-1:BBSGen.NonStandPoly"
m (insert version info) |
|||
(12 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
+ | {{Version|1}} | ||
<command> | <command> | ||
<title>BBSGen.NonStandPoly</title> | <title>BBSGen.NonStandPoly</title> | ||
− | <short_description> | + | <short_description>This function computes the non-standard polynomial generators of the vanishing ideal of border basis |
+ | scheme with respect to the arrow grading. | ||
+ | |||
+ | </short_description> | ||
<syntax> | <syntax> | ||
− | BBSGen.NonStandPoly(OO:LIST,BO:LIST, | + | BBSGen.NonStandPoly(OO,BO,W,N); |
+ | BBSGen.NonStandPoly(OO:LIST,BO:LIST,W:MATRIX,N:INTEGER):LIST | ||
+ | |||
</syntax> | </syntax> | ||
− | <description> | + | <description>Let W be the weight matrix with respect to the arrow grading(see <ref>ApCoCoA-1:BBSGen.Wmat|BBSGen.Wmat</ref>). |
+ | Let tau^kl_ij be a polynomials from the generating set Tau of the vanishing ideal of border basis scheme. It is called standard, if deg_W(tau^kl_ij) has exactly one strictly positive component. If tau^kl_ij is not standard then it is called non-standard. This function computes such non-standard polynomials. | ||
+ | <itemize> | ||
+ | <item>@param The order ideal OO, BO border of OO , the number of indeterminates of the polynomial ring K[x_1,...,x_N] and the weight matrix(<ref>ApCoCoA-1:BBSGen.Wmat|BBSGen.Wmat</ref>). | ||
+ | </item> | ||
+ | <item>@return List of polynomials and their degree with respect to the arrow grading.</item> | ||
+ | </itemize> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
<example> | <example> | ||
− | |||
Use R::=QQ[x[1..2]]; | Use R::=QQ[x[1..2]]; | ||
− | OO:= | + | OO:=$apcocoa/borderbasis.Box([1,1]); |
− | BO:= | + | BO:=$apcocoa/borderbasis.Border(OO); |
− | + | N:=Len(Indets()); | |
− | + | W:=BBSGen.Wmat(OO,BO,N); | |
− | + | XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]; | |
− | + | Use XX; | |
− | |||
− | |||
− | |||
+ | BBSGen.NonStandPoly(OO,BO,W,N); | ||
[ c[1,2]c[3,1] + c[1,4]c[4,1] - c[1,3], | [ c[1,2]c[3,1] + c[1,4]c[4,1] - c[1,3], | ||
Line 52: | Line 53: | ||
− | + | </example> | |
− | |||
</description> | </description> | ||
<types> | <types> | ||
− | <type> | + | <type>borderbasis</type> |
+ | <type>list</type> | ||
+ | <type>apcocoaserver</type> | ||
</types> | </types> | ||
− | + | ||
− | + | <see>ApCoCoA-1:BBSGen.Wmat|BBSGen.Wmat</see> | |
− | + | <see>ApCoCoA-1:BBSGen.NonStand|BBSGen.NonStand</see> | |
− | + | <key>NonStandPoly</key> | |
− | |||
<key>BBSGen.NonStandPoly</key> | <key>BBSGen.NonStandPoly</key> | ||
<key>bbsmingensys.NonStandPoly</key> | <key>bbsmingensys.NonStandPoly</key> | ||
− | <wiki-category>Package_bbsmingensys</wiki-category> | + | <wiki-category>ApCoCoA-1:Package_bbsmingensys</wiki-category> |
</command> | </command> |
Latest revision as of 09:50, 7 October 2020
This article is about a function from ApCoCoA-1. |
BBSGen.NonStandPoly
This function computes the non-standard polynomial generators of the vanishing ideal of border basis
scheme with respect to the arrow grading.
Syntax
BBSGen.NonStandPoly(OO,BO,W,N); BBSGen.NonStandPoly(OO:LIST,BO:LIST,W:MATRIX,N:INTEGER):LIST
Description
Let W be the weight matrix with respect to the arrow grading(see BBSGen.Wmat).
Let tau^kl_ij be a polynomials from the generating set Tau of the vanishing ideal of border basis scheme. It is called standard, if deg_W(tau^kl_ij) has exactly one strictly positive component. If tau^kl_ij is not standard then it is called non-standard. This function computes such non-standard polynomials.
@param The order ideal OO, BO border of OO , the number of indeterminates of the polynomial ring K[x_1,...,x_N] and the weight matrix(BBSGen.Wmat).
@return List of polynomials and their degree with respect to the arrow grading.
Example
Use R::=QQ[x[1..2]]; OO:=$apcocoa/borderbasis.Box([1,1]); BO:=$apcocoa/borderbasis.Border(OO); N:=Len(Indets()); W:=BBSGen.Wmat(OO,BO,N); XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]; Use XX; BBSGen.NonStandPoly(OO,BO,W,N); [ c[1,2]c[3,1] + c[1,4]c[4,1] - c[1,3], R :: Vector(1, 2)], [ c[1,1]c[2,2] + c[1,3]c[4,2] - c[1,4], R :: Vector(2, 1)], [ c[1,1]c[2,4] - c[1,2]c[3,3] - c[1,4]c[4,3] + c[1,3]c[4,4], R :: Vector(2, 2)], [c[2,2]c[3,1] + c[2,4]c[4,1] - c[2,3], R :: Vector(1, 1)], [c[2,1]c[2,4] - c[2,2]c[3,3] - c[2,4]c[4,3] + c[2,3]c[4,4] + c[1,4], R :: Vector(2, 1)], [c[2,2]c[3,1] + c[3,3]c[4,2] - c[3,4], R :: Vector(1, 1)], [c[2,4]c[3,1] - c[3,2]c[3,3] - c[3,4]c[4,3] + c[3,3]c[4,4] - c[1,3], R :: Vector(1, 2)], [c[2,4]c[4,1] - c[3,3]c[4,2] - c[2,3] + c[3,4], R :: Vector(1, 1)]]