Difference between revisions of "ApCoCoA-1:BBSGen.NonStand"
From ApCoCoAWiki
m (insert version info) |
|||
(15 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
+ | {{Version|1}} | ||
<command> | <command> | ||
<title>BBSGen.NonStand</title> | <title>BBSGen.NonStand</title> | ||
− | <short_description> | + | <short_description>This function computes the non-standard indeterminates from K[c] with respect to the arrow grading. </short_description> |
<syntax> | <syntax> | ||
− | BBSGen.NonStand(OO:LIST,BO:LIST,N: | + | BBSGen.NonStand(OO,BO,N,W); |
+ | BBSGen.NonStand(OO:LIST,BO:LIST,N:INTEGER,W:MATRIX):LIST | ||
</syntax> | </syntax> | ||
<description> | <description> | ||
+ | Let W be the weight matrix with respect to the arrow grading(see <ref>ApCoCoA-1:BBSGen.Wmat|BBSGen.Wmat</ref>). | ||
+ | An indeterminate c_ij in K[c] is called standard, if deg_W(c_ij)=log(b_j)-log(t_i) has exactly one strictly positive component. If c_ij is not standard then it is called non-standard. This function computes such non-standard indeterminates from ring K[c]. | ||
<itemize> | <itemize> | ||
− | + | <item>@param The order ideal OO, the border BO the number of indeterminates of the polynomial ring K[x_1,...,x_N] and the weight matrix(<ref>ApCoCoA-1:BBSGen.Wmat|BBSGen.Wmat</ref>). </item> | |
− | + | <item>@return List of Indeterminates and their degree with respect to the arrow grading. </item> | |
− | + | </itemize> | |
− | <item>@ | + | |
− | |||
− | |||
− | |||
<example> | <example> | ||
+ | Use R::=QQ[x[1..2]]; | ||
− | + | OO:=$apcocoa/borderbasis.Box([1,1]); | |
+ | BO:=$apcocoa/borderbasis.Border(OO); | ||
+ | N:=Len(Indets()); | ||
+ | W:=BBSGen.Wmat(OO,BO,N); | ||
− | + | XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]; | |
− | + | Use XX; | |
− | |||
− | |||
BBSGen.NonStand(OO,BO,N,W); | BBSGen.NonStand(OO,BO,N,W); | ||
− | [[c[1,3], [R :: 1, R :: 2]], | + | [[c[1,3], [R :: 1, R :: 2]], |
− | + | [c[1,4], [R :: 2, R :: 1]], | |
− | + | [c[2,3], [R :: 1, R :: 1]], | |
− | + | [c[3,4], [R :: 1, R :: 1]]] | |
− | + | ||
+ | |||
</example> | </example> | ||
+ | |||
</description> | </description> | ||
<types> | <types> | ||
− | <type> | + | <type>borderbasis</type> |
+ | <type>list</type> | ||
</types> | </types> | ||
− | + | ||
− | + | <see>ApCoCoA-1: BBSGen.Wmat| BBSGen.Wmat</see> | |
+ | <key>NonStand</key> | ||
<key>BBSGen.NonStand</key> | <key>BBSGen.NonStand</key> | ||
<key>bbsmingensys.NonStand</key> | <key>bbsmingensys.NonStand</key> | ||
− | <wiki-category>Package_bbsmingensys</wiki-category> | + | <wiki-category>ApCoCoA-1:Package_bbsmingensys</wiki-category> |
</command> | </command> |
Latest revision as of 09:50, 7 October 2020
This article is about a function from ApCoCoA-1. |
BBSGen.NonStand
This function computes the non-standard indeterminates from K[c] with respect to the arrow grading.
Syntax
BBSGen.NonStand(OO,BO,N,W); BBSGen.NonStand(OO:LIST,BO:LIST,N:INTEGER,W:MATRIX):LIST
Description
Let W be the weight matrix with respect to the arrow grading(see BBSGen.Wmat).
An indeterminate c_ij in K[c] is called standard, if deg_W(c_ij)=log(b_j)-log(t_i) has exactly one strictly positive component. If c_ij is not standard then it is called non-standard. This function computes such non-standard indeterminates from ring K[c].
@param The order ideal OO, the border BO the number of indeterminates of the polynomial ring K[x_1,...,x_N] and the weight matrix(BBSGen.Wmat).
@return List of Indeterminates and their degree with respect to the arrow grading.
Example
Use R::=QQ[x[1..2]]; OO:=$apcocoa/borderbasis.Box([1,1]); BO:=$apcocoa/borderbasis.Border(OO); N:=Len(Indets()); W:=BBSGen.Wmat(OO,BO,N); XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]; Use XX; BBSGen.NonStand(OO,BO,N,W); [[c[1,3], [R :: 1, R :: 2]], [c[1,4], [R :: 2, R :: 1]], [c[2,3], [R :: 1, R :: 1]], [c[3,4], [R :: 1, R :: 1]]]