Difference between revisions of "ApCoCoA-1:BBSGen.JacobiStep"
(New page: <command> <title>BBSGen.JacobiStep</title> <short_description>: This function computes the polynomial entry of a given position of the Jacobi identity [ A_i[A_k,A_l ] ]+[ A_k[ A_l...) |
m (insert version info) |
||
(21 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
+ | {{Version|1}} | ||
<command> | <command> | ||
<title>BBSGen.JacobiStep</title> | <title>BBSGen.JacobiStep</title> | ||
− | <short_description>: | + | <short_description>Let R:=K[x_1,...,x_N] and let OO be an order ideal. This function computes the entry in the position (I,J) of the Jacobi identity matrix J^klm [ A_m[A_k,A_l ] ]+[ A_k[ A_l,A_m]] +[ A_l[A_m,A_k ] ] where m,k,l is from {1,...,N} and I,J in {1,...,Len(OO)}. |
</short_description> | </short_description> | ||
Line 7: | Line 8: | ||
BBGGen.JacobiStep(I,J,OO,BO,N); | BBGGen.JacobiStep(I,J,OO,BO,N); | ||
− | BBSGen.JacobiStep(I:INTEGER,J:INTEGER,OO:LIST,BO:LIST,N:INTEGER): | + | BBSGen.JacobiStep(I:INTEGER,J:INTEGER,OO:LIST,BO:LIST,N:INTEGER):LIST |
</syntax> | </syntax> | ||
<description> | <description> | ||
− | Let R=K[x_1,..., | + | Let R=K[x_1,...,x_N] and A_k be the generic multiplication matrix associated to x_k. Let tau^kl_ij be the polynomial in the (i,j) position of the [A_k,A_l] where k,l in {1,..,N}. |
+ | |||
+ | This function computes the given (I,J) position of the Jacobi identity J^mkl= [ A_m[A_k,A_l ] ]+[ A_k[ A_l,A_m]] +[ A_l[A_m,A_k ] ] where m,k,l is from {1,...,N}. During the computation entries of the commutators tau^kl_ij will be considered as indeterminates t[k,l,i,j] in XX=K[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]], where Mu:=Len(OO),Nu:=Len(BO) and N is the number of indeterminates from the polynomial ring K[x_1,...,x_N]. | ||
− | Please note that this function does not work for the case, where | + | Please note that this function does not work for the case, where N=2. |
<itemize> | <itemize> | ||
− | <item>@param I,J position of J^ | + | <item>@param I,J position of J^klm, order ideal OO, border BO, the number of indeterminates of the polynomial ring K[x_1,...,x_N]. |
− | |||
</item> | </item> | ||
− | <item>@return The | + | <item>@return The list of the polynomial in the (I,J) position of the Jacobi Identity J^{ikl}. |
</item> | </item> | ||
</itemize> | </itemize> | ||
Line 30: | Line 32: | ||
OO:=[1,x[1]]; | OO:=[1,x[1]]; | ||
− | BO:= | + | BO:=$apcocoa/borderbasis.Border(OO); |
Mu:=Len(OO); | Mu:=Len(OO); | ||
Nu:=Len(BO); | Nu:=Len(BO); | ||
Line 38: | Line 40: | ||
BBSGen.JacobiStep(1,2,OO,BO,N); | BBSGen.JacobiStep(1,2,OO,BO,N); | ||
− | [[-c[1,3]t[1,2,1,1] + c[1,1]t[1,2,1,2] - c[2,3]t[1,2,1,2] + c[1,3]t[1,2,2,2] - c[1,4]t[1,3,1,1] + c[1,2]t[1,3,1,2] - c[2,4]t[1,3,1,2] + c[1,4]t[1,3,2,2] - c[1,5]t[2,3,1,1] - c[2,5]t[2,3,1,2] + c[1,5]t[2,3,2,2]]]] | + | [[-c[1,3]t[1,2,1,1] + c[1,1]t[1,2,1,2] - c[2,3]t[1,2,1,2] + |
+ | c[1,3]t[1,2,2,2] - c[1,4]t[1,3,1,1] + c[1,2]t[1,3,1,2] - | ||
+ | c[2,4]t[1,3,1,2] + c[1,4]t[1,3,2,2] - c[1,5]t[2,3,1,1] - | ||
+ | c[2,5]t[2,3,1,2] + c[1,5]t[2,3,2,2]]]] | ||
----------- | ----------- | ||
Line 44: | Line 49: | ||
</description> | </description> | ||
<types> | <types> | ||
− | <type> | + | <type>bbsmingensys</type> |
− | <type> | + | <type>list</type> |
<type>apcocoaserver</type> | <type>apcocoaserver</type> | ||
</types> | </types> | ||
− | |||
− | |||
− | |||
− | |||
− | <key> | + | <see>ApCoCoA-1:BBSGen.JacobiFull|BBSGen.JacobiFull</see> |
− | <key>BBSGen. | + | <see>ApCoCoA-1:BBSGen.JacobiLin|BBSGen.JacobiLin</see> |
− | <key>bbsmingensys. | + | |
− | <wiki-category>Package_bbsmingensys</wiki-category> | + | <key>JacobiStep</key> |
+ | <key>BBSGen.JacobiStep</key> | ||
+ | <key>bbsmingensys.JacobiStep</key> | ||
+ | <wiki-category>ApCoCoA-1:Package_bbsmingensys</wiki-category> | ||
</command> | </command> |
Latest revision as of 09:50, 7 October 2020
This article is about a function from ApCoCoA-1. |
BBSGen.JacobiStep
Let R:=K[x_1,...,x_N] and let OO be an order ideal. This function computes the entry in the position (I,J) of the Jacobi identity matrix J^klm [ A_m[A_k,A_l ] ]+[ A_k[ A_l,A_m]] +[ A_l[A_m,A_k ] ] where m,k,l is from {1,...,N} and I,J in {1,...,Len(OO)}.
Syntax
BBGGen.JacobiStep(I,J,OO,BO,N); BBSGen.JacobiStep(I:INTEGER,J:INTEGER,OO:LIST,BO:LIST,N:INTEGER):LIST
Description
Let R=K[x_1,...,x_N] and A_k be the generic multiplication matrix associated to x_k. Let tau^kl_ij be the polynomial in the (i,j) position of the [A_k,A_l] where k,l in {1,..,N}.
This function computes the given (I,J) position of the Jacobi identity J^mkl= [ A_m[A_k,A_l ] ]+[ A_k[ A_l,A_m]] +[ A_l[A_m,A_k ] ] where m,k,l is from {1,...,N}. During the computation entries of the commutators tau^kl_ij will be considered as indeterminates t[k,l,i,j] in XX=K[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]], where Mu:=Len(OO),Nu:=Len(BO) and N is the number of indeterminates from the polynomial ring K[x_1,...,x_N].
Please note that this function does not work for the case, where N=2.
@param I,J position of J^klm, order ideal OO, border BO, the number of indeterminates of the polynomial ring K[x_1,...,x_N].
@return The list of the polynomial in the (I,J) position of the Jacobi Identity J^{ikl}.
Example
Use R::=QQ[x[1..3]]; OO:=[1,x[1]]; BO:=$apcocoa/borderbasis.Border(OO); Mu:=Len(OO); Nu:=Len(BO); N:=Len(Indets()); Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]; BBSGen.JacobiStep(1,2,OO,BO,N); [[-c[1,3]t[1,2,1,1] + c[1,1]t[1,2,1,2] - c[2,3]t[1,2,1,2] + c[1,3]t[1,2,2,2] - c[1,4]t[1,3,1,1] + c[1,2]t[1,3,1,2] - c[2,4]t[1,3,1,2] + c[1,4]t[1,3,2,2] - c[1,5]t[2,3,1,1] - c[2,5]t[2,3,1,2] + c[1,5]t[2,3,2,2]]]] -----------