Difference between revisions of "ApCoCoA-1:BB.TransformBBIntoGB"
From ApCoCoAWiki
m (Bot: fixed typo) |
m (insert version info) |
||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
+ | {{Version|1}} | ||
<command> | <command> | ||
<title>BB.TransformBBIntoGB</title> | <title>BB.TransformBBIntoGB</title> | ||
Line 40: | Line 41: | ||
</types> | </types> | ||
− | <see>Introduction to CoCoAServer</see> | + | <see>ApCoCoA-1:Introduction to CoCoAServer|Introduction to CoCoAServer</see> |
− | <see>Introduction to Groebner Basis in CoCoA</see> | + | <see>ApCoCoA-1:Introduction to Groebner Basis in CoCoA|Introduction to Groebner Basis in CoCoA</see> |
− | <see>BB.BBasis</see> | + | <see>ApCoCoA-1:BB.BBasis|BB.BBasis</see> |
− | <see>GBasis</see> | + | <see>ApCoCoA-1:GBasis|GBasis</see> |
<key>TransformBBIntoGB</key> | <key>TransformBBIntoGB</key> |
Latest revision as of 09:43, 7 October 2020
This article is about a function from ApCoCoA-1. |
BB.TransformBBIntoGB
Transforms a border basis into a Groebner basis.
Syntax
BB.TransformBBIntoGB(BB:LIST of POLY):LIST of POLY
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.
Let BB be a list of polynomials that form a O_sigma(I)-border basis of a zero-dimensional ideal I. This function extracts the reduced sigma-Groebner basis contained in the O_sigma(I)-border basis BB and returns it as a list of polynomials.
@param BB A border basis of an ideal.
@return A list of polynomials that represents the reduced Groebner basis of the ideal generated by the input polynomials in BB.
Example
Use ZZ/(32003)[x,y,z],DegLex; I := Ideal( 4*x+5*y+6, 2*x^2*z+4*y^2*z+4*y*z^2+3*x*y+25*y^2+7*x*z+2*y-3*z, x^2*y+3*x*y*z+x*z^2+15*x^2+x*y+9*y*z+7 ); BB := BB.BBasis(I); -- compute a border basis of I GB := BB.TransformBBIntoGB(BB); GB; ------------------------------- [x + 8002y - 16000, y^2z - 5614yz^2 + 6179y^2 - 2246yz - 4492y - 3370z, y^3 + 12128yz^2 + 2045y^2 - 10508yz + 10240z^2 + 3337y - 8088z - 11495, z^4 - 928yz^2 + 15802z^3 - 8546y^2 - 13286yz - 15491z^2 - 13314y + 5553z - 11227, yz^3 - 9667yz^2 + 11342z^3 + 6752y^2 + 8104yz - 15091z^2 - 950y - 15081z + 885] -------------------------------
Introduction to Groebner Basis in CoCoA