Difference between revisions of "ApCoCoA-1:BB.MultMat"
From ApCoCoAWiki
m (Bot: Category moved) |
m (insert version info) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
+ | {{Version|1}} | ||
<command> | <command> | ||
<title>BB.MultMat</title> | <title>BB.MultMat</title> | ||
Line 7: | Line 8: | ||
</syntax> | </syntax> | ||
<description> | <description> | ||
− | Computes the <tt>I</tt>-th multiplication matrix associated to the given input <tt>OO</tt>-border basis <tt>BB</tt> of the ideal generated by the polynomials of <tt>BB</tt> where <tt>I</tt> is an index number in the range 1..<ref>NumIndets</ref>(). | + | Computes the <tt>I</tt>-th multiplication matrix associated to the given input <tt>OO</tt>-border basis <tt>BB</tt> of the ideal generated by the polynomials of <tt>BB</tt> where <tt>I</tt> is an index number in the range 1..<ref>ApCoCoA-1:NumIndets|NumIndets</ref>(). |
The output is a matrix. | The output is a matrix. | ||
<itemize> | <itemize> | ||
Line 40: | Line 41: | ||
<type>matrix</type> | <type>matrix</type> | ||
</types> | </types> | ||
− | <see>BB.BBasis</see> | + | <see>ApCoCoA-1:BB.BBasis|BB.BBasis</see> |
− | <see>BB.BBasisForOI</see> | + | <see>ApCoCoA-1:BB.BBasisForOI|BB.BBasisForOI</see> |
− | <see>BB.GenMultMat</see> | + | <see>ApCoCoA-1:BB.GenMultMat|BB.GenMultMat</see> |
<key>MultMat</key> | <key>MultMat</key> | ||
<key>BB.MultMat</key> | <key>BB.MultMat</key> | ||
<key>borderbasis.MultMat</key> | <key>borderbasis.MultMat</key> | ||
− | <wiki-category> | + | <wiki-category>ApCoCoA-1:Package_borderbasis</wiki-category> |
</command> | </command> |
Latest revision as of 09:42, 7 October 2020
This article is about a function from ApCoCoA-1. |
BB.MultMat
Computes the i-th multiplication matrix associated to a border basis.
Syntax
BB.MultMat(I:INT, OO:LIST, BB:LIST):MAT
Description
Computes the I-th multiplication matrix associated to the given input OO-border basis BB of the ideal generated by the polynomials of BB where I is an index number in the range 1..NumIndets().
The output is a matrix.
@param I Index of indeterminate.
@param OO A list of terms representing an order ideal.
@param BB A list of terms representing the OO-border basis of the ideal generated by the polynomials of BB.
@return The I-th multiplication matrix.
Example
Use QQ[x,y]; BB.MultMat(1, [1, y, y^2, y^3, x, xy, x^2, x^2y], [xy^2, x^3 + xy, y^4, xy^3, x^2y^2, x^3y]); ------------------------------- Mat([ [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, -1, 0], [0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0] ]) -------------------------------