Difference between revisions of "ApCoCoA-1:BB.LiftNDViaServer"

From ApCoCoAWiki
(Key and see section update.)
m (insert version info)
 
(13 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 +
{{Version|1}}
 
<command>
 
<command>
    <title>BB.LiftNDViaServer</title>
+
  <title>BB.LiftNDViaServer</title>
    <short_description>Compute the border basis scheme ideal generators obtained from lifting of ND neighbors.</short_description>
+
  <short_description>Computes the border basis scheme ideal generators obtained from lifting of next-door neighbors.</short_description>
 +
 
 
<syntax>
 
<syntax>
 
BB.LiftNDViaServer(OO:LIST,Border:LIST,HomogeneousLift:BOOL):LIST
 
BB.LiftNDViaServer(OO:LIST,Border:LIST,HomogeneousLift:BOOL):LIST
 
</syntax>
 
</syntax>
 
     <description>
 
     <description>
{{ApCoCoAServer}}
+
<em>Please note:</em> The function(s) explained on this page is/are using the <em>ApCoCoAServer</em>. You will have to start the ApCoCoAServer in order to use it/them.
 
+
<par/>
If <tt>HomogeneousLift</tt> is set to <tt>False</tt>, the generators of the border basis scheme ideal <formula>I(\mathbb{B}_\mathcal{O})</formula> that result from the lifting of next-door neighbors will computed by using the ApCoCoAServer. The input is a list of terms <tt>OO</tt> representing an order ideal and a list of terms <tt>Border</tt> representing the border of the order ideal. If <tt>HomogeneousLift</tt> is set to <tt>True</tt>, generators of <formula>I(\mathbb{B}^{\textrm{hom}}_\mathcal{O})</formula> will be computed instead. The output is a list of polynomials in the ring <formula>BBS=K[c_{ij}]</formula>.
+
If <tt>HomogeneousLift</tt> is set to <tt>FALSE</tt>, the generators of the border basis scheme ideal <tt>I(B_O)</tt> that result from the lifting of next-door neighbors will computed by using the ApCoCoAServer. If <tt>HomogeneousLift</tt> is set to <tt>TRUE</tt>, generators of <tt>I(B^hom_O)</tt> will be computed instead.
 
<itemize>
 
<itemize>
 
   <item>@param <em>OO</em> A list of terms representing an order ideal.</item>
 
   <item>@param <em>OO</em> A list of terms representing an order ideal.</item>
   <item>@param <em>Border</em> A list of terms representing the border of OO</item>
+
   <item>@param <em>Border</em> A list of terms representing the border of the order ideal.</item>
   <item>@param <em>Homogeneous</em> Set to <em>TRUE</em> if you want to compute the generators of the homogeneous border basis scheme.</item>
+
   <item>@param <em>Homogeneous</em> Set to <tt>TRUE</tt> if you want to compute the generators of the homogeneous border basis scheme.</item>
   <item>@return A list of generators of the border basis scheme ideal I(B_O) that results from the lifting of next-door neighbors. The polynomials will belong to the ring BBS=K[c_{ij}].</item>
+
   <item>@return A list of generators of the border basis scheme ideal. The polynomials will belong to the ring <tt>BBS=K[c_{ij}]</tt>.</item>
 
</itemize>
 
</itemize>
 
<example>
 
<example>
Use Q[x,y], DegRevLex;
+
Use QQ[x,y], DegRevLex;
 
BB.LiftNDViaServer([Poly(1), x, y, xy], [y^2, x^2, xy^2, x^2y], False);
 
BB.LiftNDViaServer([Poly(1), x, y, xy], [y^2, x^2, xy^2, x^2y], False);
  
Line 29: Line 31:
 
  BBS :: c[1,1]c[3,2] + c[1,3]c[4,2] - c[1,4]]
 
  BBS :: c[1,1]c[3,2] + c[1,3]c[4,2] - c[1,4]]
 
-------------------------------
 
-------------------------------
 
+
</example>
Use Q[x,y,z], DegRevLex;
+
<example>
 +
Use QQ[x,y,z], DegRevLex;
 
BB.LiftNDViaServer([Poly(1), x, y, xy], [z, yz, xz, y^2, x^2, xyz, xy^2, x^2y], True);
 
BB.LiftNDViaServer([Poly(1), x, y, xy], [z, yz, xz, y^2, x^2, xyz, xy^2, x^2y], True);
  
Line 38: Line 41:
 
-------------------------------
 
-------------------------------
 
</example>
 
</example>
     </description>
+
  </description>
     <see>BB.LiftAS</see>
+
  <types>
    <see>BB.LiftASViaServer</see>
+
    <type>borderbasis</type>
    <see>BB.LiftHomAS</see>
+
     <type>ideal</type>
    <see>BB.LiftND</see>
+
     <type>apcocoaserver</type>
    <see>BB.LiftHomND</see>
+
  </types>
    <key>LiftNDViaServer</key>
+
 
    <key>BB.LiftNDViaServer</key>
+
  <see>ApCoCoA-1:Introduction to CoCoAServer|Introduction to CoCoAServer</see>
    <key>borderbasis.LiftNDViaServer</key>
+
  <see>ApCoCoA-1:BB.LiftAS|BB.LiftAS</see>
    <wiki-category>Package_borderbasis</wiki-category>
+
  <see>ApCoCoA-1:BB.LiftASViaServer|BB.LiftASViaServer</see>
 +
  <see>ApCoCoA-1:BB.LiftHomAS|BB.LiftHomAS</see>
 +
  <see>ApCoCoA-1:BB.LiftND|BB.LiftND</see>
 +
  <see>ApCoCoA-1:BB.LiftHomND|BB.LiftHomND</see>
 +
 
 +
  <key>LiftNDViaServer</key>
 +
  <key>BB.LiftNDViaServer</key>
 +
  <key>borderbasis.LiftNDViaServer</key>
 +
  <wiki-category>ApCoCoA-1:Package_borderbasis</wiki-category>
 
</command>
 
</command>

Latest revision as of 09:42, 7 October 2020

This article is about a function from ApCoCoA-1.

BB.LiftNDViaServer

Computes the border basis scheme ideal generators obtained from lifting of next-door neighbors.

Syntax

BB.LiftNDViaServer(OO:LIST,Border:LIST,HomogeneousLift:BOOL):LIST

Description

Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.

If HomogeneousLift is set to FALSE, the generators of the border basis scheme ideal I(B_O) that result from the lifting of next-door neighbors will computed by using the ApCoCoAServer. If HomogeneousLift is set to TRUE, generators of I(B^hom_O) will be computed instead.

  • @param OO A list of terms representing an order ideal.

  • @param Border A list of terms representing the border of the order ideal.

  • @param Homogeneous Set to TRUE if you want to compute the generators of the homogeneous border basis scheme.

  • @return A list of generators of the border basis scheme ideal. The polynomials will belong to the ring BBS=K[c_{ij}].

Example

Use QQ[x,y], DegRevLex;
BB.LiftNDViaServer([Poly(1), x, y, xy], [y^2, x^2, xy^2, x^2y], False);

-------------------------------
[BBS :: c[2,1]c[4,2] + c[4,1]c[4,4] + c[3,1] - c[4,3],
 BBS :: c[2,1]c[2,2] + c[2,4]c[4,1] + c[1,1] - c[2,3],
 BBS :: c[2,1]c[3,2] + c[3,4]c[4,1] - c[3,3],
 BBS :: c[1,2]c[2,1] + c[1,4]c[4,1] - c[1,3],
 BBS :: c[3,2]c[4,1] + c[4,2]c[4,3] + c[2,2] - c[4,4],
 BBS :: c[2,1]c[3,2] + c[2,3]c[4,2] - c[2,4],
 BBS :: c[3,1]c[3,2] + c[3,3]c[4,2] + c[1,2] - c[3,4],
 BBS :: c[1,1]c[3,2] + c[1,3]c[4,2] - c[1,4]]
-------------------------------

Example

Use QQ[x,y,z], DegRevLex;
BB.LiftNDViaServer([Poly(1), x, y, xy], [z, yz, xz, y^2, x^2, xyz, xy^2, x^2y], True);

-------------------------------
[BBS :: c[3,1]c[4,4] + c[2,1] - c[4,2],
 BBS :: c[2,1]c[4,5] + c[3,1] - c[4,3]]
-------------------------------


Introduction to CoCoAServer

BB.LiftAS

BB.LiftASViaServer

BB.LiftHomAS

BB.LiftND

BB.LiftHomND