Difference between revisions of "ApCoCoA-1:BB.LiftHomAS"
From ApCoCoAWiki
(Initial version) |
m (insert version info) |
||
(21 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
+ | {{Version|1}} | ||
<command> | <command> | ||
− | + | <title>BB.LiftHomAS</title> | |
− | + | <short_description>Computes the homogeneous border basis scheme generators obtained from lifting of AS neighbours.</short_description> | |
+ | |||
<syntax> | <syntax> | ||
− | + | BB.LiftHomAS(OO:LIST):LIST | |
</syntax> | </syntax> | ||
− | + | <description> | |
− | + | This command computes the equations defining the homogeneous border basis scheme and coming from the lifting of across-the-street neighbours. | |
− | + | <itemize> | |
− | <key> | + | <item>@param <em>OO</em> A list of terms representing an order ideal. The second element is of type <tt>POLY</tt>.</item> |
− | + | <item>@return A list of generators of the homogeneous border basis scheme ideal. The polynomials will belong to the ring <tt>BBS=K[c_{ij}]</tt>.</item> | |
− | + | </itemize> | |
− | + | </description> | |
+ | <types> | ||
+ | <type>borderbasis</type> | ||
+ | </types> | ||
+ | <see>ApCoCoA-1:BB.LiftAS|BB.LiftAS</see> | ||
+ | <see>ApCoCoA-1:BB.LiftASViaServer|BB.LiftASViaServer</see> | ||
+ | <see>ApCoCoA-1:BB.LiftND|BB.LiftND</see> | ||
+ | <see>ApCoCoA-1:BB.LiftNDViaServer|BB.LiftNDViaServer</see> | ||
+ | <see>ApCoCoA-1:BB.LiftHomND|BB.LiftHomND</see> | ||
+ | |||
+ | <key>LiftHomAS</key> | ||
+ | <key>BB.LiftHomAS</key> | ||
+ | <key>borderbasis.LiftHomAS</key> | ||
+ | <wiki-category>ApCoCoA-1:Package_borderbasis</wiki-category> | ||
</command> | </command> |
Latest revision as of 09:41, 7 October 2020
This article is about a function from ApCoCoA-1. |
BB.LiftHomAS
Computes the homogeneous border basis scheme generators obtained from lifting of AS neighbours.
Syntax
BB.LiftHomAS(OO:LIST):LIST
Description
This command computes the equations defining the homogeneous border basis scheme and coming from the lifting of across-the-street neighbours.
@param OO A list of terms representing an order ideal. The second element is of type POLY.
@return A list of generators of the homogeneous border basis scheme ideal. The polynomials will belong to the ring BBS=K[c_{ij}].