Difference between revisions of "ApCoCoA-1:BB.HomBBscheme"
From ApCoCoAWiki
(Shortened short description) |
m (insert version info) |
||
(21 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
+ | {{Version|1}} | ||
<command> | <command> | ||
− | + | <title>BB.HomBBscheme</title> | |
− | + | <short_description>Computes the defining equations of a homogeneous border basis scheme.</short_description> | |
+ | |||
<syntax> | <syntax> | ||
− | + | BB.HomBBscheme(OO:LIST):IDEAL | |
</syntax> | </syntax> | ||
− | + | <description> | |
− | Computes the defining equations of the homogeneous border basis scheme using the commutators of the generic homogeneous multiplication matrices. | + | Computes the defining equations of the homogeneous border basis scheme using the commutators of the generic homogeneous multiplication matrices. |
− | + | <itemize> | |
− | <key> | + | <item>@param <em>OO</em> A list of terms representing an order ideal. The second element of <tt>OO</tt> must be a non-constant polynomial.</item> |
− | + | <item>@return A list of polynomials representing the defining equations of the homogeneous border basis scheme. The polynomials will belong to the ring <tt>BBS=K[c_{ij}]</tt>.</item> | |
− | + | </itemize> | |
− | + | </description> | |
+ | <types> | ||
+ | <type>borderbasis</type> | ||
+ | </types> | ||
+ | <see>ApCoCoA-1:BB.BBscheme|BB.BBscheme</see> | ||
+ | <key>HomBBscheme</key> | ||
+ | <key>BB.HomBBscheme</key> | ||
+ | <key>borderbasis.HomBBscheme</key> | ||
+ | <wiki-category>ApCoCoA-1:Package_borderbasis</wiki-category> | ||
</command> | </command> |
Latest revision as of 09:41, 7 October 2020
This article is about a function from ApCoCoA-1. |
BB.HomBBscheme
Computes the defining equations of a homogeneous border basis scheme.
Syntax
BB.HomBBscheme(OO:LIST):IDEAL
Description
Computes the defining equations of the homogeneous border basis scheme using the commutators of the generic homogeneous multiplication matrices.
@param OO A list of terms representing an order ideal. The second element of OO must be a non-constant polynomial.
@return A list of polynomials representing the defining equations of the homogeneous border basis scheme. The polynomials will belong to the ring BBS=K[c_{ij}].