Difference between revisions of "ApCoCoA-1:BB.GenMultMat"

From ApCoCoAWiki
(Types section update.)
m (insert version info)
 
(8 intermediate revisions by 4 users not shown)
Line 1: Line 1:
 +
{{Version|1}}
 
<command>
 
<command>
 
   <title>BB.GenMultMat</title>
 
   <title>BB.GenMultMat</title>
   <short_description>Compute a generic multiplication matrix.</short_description>
+
   <short_description>Computes a generic multiplication matrix.</short_description>
   <syntax>BB.GenMultMat(I:INT,OO:LIST):MAT</syntax>
+
    
 +
<syntax>
 +
BB.GenMultMat(I:INT,OO:LIST):MAT
 +
</syntax>
 
   <description>
 
   <description>
Computes the generic multiplication matrix for x[I] with respect to an order ideal. The inputs are an integer I and a list OO of terms that specify an order ideal. The second element of OO must be a non-constant polynomial. The output is a matrix of size <ref>Len</ref>(OO) x <ref>Len</ref>(OO) over the ring BBS=K[c_{ij}].
+
Computes the generic multiplication matrix for the <tt>I</tt>-th indeterminate with respect to an order ideal. The second element of <tt>OO</tt> must be a non-constant polynomial. The output is a matrix of size <ref>CoCoA:Len|Len</ref>(OO) x <ref>CoCoA:Len|Len</ref>(OO) over the ring <tt>BBS=K[c_{ij}]</tt>.
 
<itemize>
 
<itemize>
   <item>@param <em>I</em> The generic ultiplication matrix for the indeterminate x[I] will be computed.</item>
+
   <item>@param <em>I</em> An integer which specifies the indeterminate for which the generic multiplication matrix will be computed.</item>
 
   <item>@param <em>OO</em> A list of terms representing an order ideal.</item>
 
   <item>@param <em>OO</em> A list of terms representing an order ideal.</item>
   <item>@return The generic multiplication matrix for the indeterminate x[I] over the ring BBS=K[c_{ij}].</item>
+
   <item>@return The generic multiplication matrix.</item>
 
</itemize>
 
</itemize>
 +
<example>
 +
Use QQ[x, y, z], DegRevLex;
 +
BB.GenMultMat(1, [1, x, y, z]);
 +
 +
-------------------------------
 +
Mat([
 +
  [0, BBS :: c[1,6], BBS :: c[1,5], BBS :: c[1,3]],
 +
  [1, BBS :: c[2,6], BBS :: c[2,5], BBS :: c[2,3]],
 +
  [0, BBS :: c[3,6], BBS :: c[3,5], BBS :: c[3,3]],
 +
  [0, BBS :: c[4,6], BBS :: c[4,5], BBS :: c[4,3]]
 +
])
 +
-------------------------------
 +
</example>
 
   </description>
 
   </description>
 
   <types>
 
   <types>
    <type>list</type>
 
    <type>int</type>
 
    <type>integer</type>
 
 
     <type>borderbasis</type>
 
     <type>borderbasis</type>
 +
    <type>matrix</type>
 
   </types>
 
   </types>
 
   <key>GenMultMat</key>
 
   <key>GenMultMat</key>
 
   <key>BB.GenMultMat</key>
 
   <key>BB.GenMultMat</key>
 
   <key>borderbasis.GenMultMat</key>
 
   <key>borderbasis.GenMultMat</key>
   <wiki-category>Package_borderbasis</wiki-category>
+
   <wiki-category>ApCoCoA-1:Package_borderbasis</wiki-category>
 
</command>
 
</command>

Latest revision as of 09:40, 7 October 2020

This article is about a function from ApCoCoA-1.

BB.GenMultMat

Computes a generic multiplication matrix.

Syntax

BB.GenMultMat(I:INT,OO:LIST):MAT

Description

Computes the generic multiplication matrix for the I-th indeterminate with respect to an order ideal. The second element of OO must be a non-constant polynomial. The output is a matrix of size Len(OO) x Len(OO) over the ring BBS=K[c_{ij}].

  • @param I An integer which specifies the indeterminate for which the generic multiplication matrix will be computed.

  • @param OO A list of terms representing an order ideal.

  • @return The generic multiplication matrix.

Example

Use QQ[x, y, z], DegRevLex;
BB.GenMultMat(1, [1, x, y, z]);

-------------------------------
Mat([
  [0, BBS :: c[1,6], BBS :: c[1,5], BBS :: c[1,3]],
  [1, BBS :: c[2,6], BBS :: c[2,5], BBS :: c[2,3]],
  [0, BBS :: c[3,6], BBS :: c[3,5], BBS :: c[3,3]],
  [0, BBS :: c[4,6], BBS :: c[4,5], BBS :: c[4,3]]
])
-------------------------------