Difference between revisions of "ApCoCoA-1:BB.GenMultMat"
From ApCoCoAWiki
m (Bot: Category moved) |
m (insert version info) |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
+ | {{Version|1}} | ||
<command> | <command> | ||
<title>BB.GenMultMat</title> | <title>BB.GenMultMat</title> | ||
Line 7: | Line 8: | ||
</syntax> | </syntax> | ||
<description> | <description> | ||
− | Computes the generic multiplication matrix for the <tt>I</tt>-th indeterminate with respect to an order ideal. The second element of <tt>OO</tt> must be a non-constant polynomial. The output is a matrix of size <ref>Len</ref>(OO) x <ref>Len</ref>(OO) over the ring <tt>BBS=K[c_{ij}]</tt>. | + | Computes the generic multiplication matrix for the <tt>I</tt>-th indeterminate with respect to an order ideal. The second element of <tt>OO</tt> must be a non-constant polynomial. The output is a matrix of size <ref>CoCoA:Len|Len</ref>(OO) x <ref>CoCoA:Len|Len</ref>(OO) over the ring <tt>BBS=K[c_{ij}]</tt>. |
<itemize> | <itemize> | ||
<item>@param <em>I</em> An integer which specifies the indeterminate for which the generic multiplication matrix will be computed.</item> | <item>@param <em>I</em> An integer which specifies the indeterminate for which the generic multiplication matrix will be computed.</item> | ||
Line 34: | Line 35: | ||
<key>BB.GenMultMat</key> | <key>BB.GenMultMat</key> | ||
<key>borderbasis.GenMultMat</key> | <key>borderbasis.GenMultMat</key> | ||
− | <wiki-category> | + | <wiki-category>ApCoCoA-1:Package_borderbasis</wiki-category> |
</command> | </command> |
Latest revision as of 09:40, 7 October 2020
This article is about a function from ApCoCoA-1. |
BB.GenMultMat
Computes a generic multiplication matrix.
Syntax
BB.GenMultMat(I:INT,OO:LIST):MAT
Description
Computes the generic multiplication matrix for the I-th indeterminate with respect to an order ideal. The second element of OO must be a non-constant polynomial. The output is a matrix of size Len(OO) x Len(OO) over the ring BBS=K[c_{ij}].
@param I An integer which specifies the indeterminate for which the generic multiplication matrix will be computed.
@param OO A list of terms representing an order ideal.
@return The generic multiplication matrix.
Example
Use QQ[x, y, z], DegRevLex; BB.GenMultMat(1, [1, x, y, z]); ------------------------------- Mat([ [0, BBS :: c[1,6], BBS :: c[1,5], BBS :: c[1,3]], [1, BBS :: c[2,6], BBS :: c[2,5], BBS :: c[2,3]], [0, BBS :: c[3,6], BBS :: c[3,5], BBS :: c[3,3]], [0, BBS :: c[4,6], BBS :: c[4,5], BBS :: c[4,3]] ]) -------------------------------