Difference between revisions of "ApCoCoA-1:BB.GenHomMultMat"

From ApCoCoAWiki
(shorten the short_description)
m (insert version info)
 
(18 intermediate revisions by 6 users not shown)
Line 1: Line 1:
 +
{{Version|1}}
 
<command>
 
<command>
    <title>borderbasis.GenHomMultMat</title>
+
  <title>BB.GenHomMultMat</title>
    <short_description>generic homogeneous multiplication matrix</short_description>
+
  <short_description>Computes a generic homogeneous multiplication matrix.</short_description>
 +
 
 
<syntax>
 
<syntax>
$borderbasis.GenHomMultMat(I:INT,OO:LIST):MAT
+
BB.GenHomMultMat(I:INT,OO:LIST):MAT
 
</syntax>
 
</syntax>
    <description>
+
  <description>
Computes the generic homogeneous multiplication matrix for <formula>x[I]</formula> with respect to the order ideal OO. The input is a positive integer I and an order ideal OO (2nd element of type POLY). The output is a matrix of size <formula>Mu<times/>Mu</formula> over the ring <formula>BBS=K[c_{ij}]</formula>.
+
Computes the generic homogeneous multiplication matrix for <tt>x[I]</tt> with respect to an order ideal. The inputs are an integer <tt>I</tt> and a list <tt>OO</tt> of terms that specify an order ideal. The second element of <tt>OO</tt> must be a non-constant polynomial. The output is a matrix of size <ref>CoCoA:Len|Len</ref>(OO) x <ref>CoCoA:Len|Len</ref>(OO) over the ring <tt>BBS=K[c_{ij}]</tt>.
     </description>
+
<itemize>
     <key>Kreuzer</key>
+
  <item>@param <em>I</em> An integer which specifies the indeterminate for which the generic homogeneous multiplication matrix will be computed.</item>
    <key>borderbasis.genhommultmat</key>
+
  <item>@param <em>OO</em> A list of terms representing an order ideal.</item>
    <key>borderbasisgenhommultmat</key>
+
  <item>@return The generic homogeneous multiplication matrix.</item>
    <wiki-category>Package_borderbasis</wiki-category>
+
</itemize>
 +
<example>
 +
Use QQ[x, y, z], DegRevLex;
 +
BB.GenHomMultMat(1, [1, x, x^2, y, z]);
 +
 
 +
-------------------------------
 +
Mat([
 +
  [0, 0, 0, 0, 0],
 +
  [1, 0, 0, 0, 0],
 +
  [0, 1, 0, BBS :: c[3,5], BBS :: c[3,3]],
 +
  [0, 0, 0, 0, 0],
 +
  [0, 0, 0, 0, 0]
 +
])
 +
-------------------------------
 +
</example>
 +
  </description>
 +
  <types>
 +
     <type>borderbasis</type>
 +
     <type>matrix</type>
 +
  </types>
 +
  <key>GenHomMultMat</key>
 +
  <key>BB.GenHomMultMat</key>
 +
  <key>borderbasis.GenHomMultMat</key>
 +
  <wiki-category>ApCoCoA-1:Package_borderbasis</wiki-category>
 
</command>
 
</command>

Latest revision as of 09:40, 7 October 2020

This article is about a function from ApCoCoA-1.

BB.GenHomMultMat

Computes a generic homogeneous multiplication matrix.

Syntax

BB.GenHomMultMat(I:INT,OO:LIST):MAT

Description

Computes the generic homogeneous multiplication matrix for x[I] with respect to an order ideal. The inputs are an integer I and a list OO of terms that specify an order ideal. The second element of OO must be a non-constant polynomial. The output is a matrix of size Len(OO) x Len(OO) over the ring BBS=K[c_{ij}].

  • @param I An integer which specifies the indeterminate for which the generic homogeneous multiplication matrix will be computed.

  • @param OO A list of terms representing an order ideal.

  • @return The generic homogeneous multiplication matrix.

Example

Use QQ[x, y, z], DegRevLex;
BB.GenHomMultMat(1, [1, x, x^2, y, z]);

-------------------------------
Mat([
  [0, 0, 0, 0, 0],
  [1, 0, 0, 0, 0],
  [0, 1, 0, BBS :: c[3,5], BBS :: c[3,3]],
  [0, 0, 0, 0, 0],
  [0, 0, 0, 0, 0]
])
-------------------------------