Difference between revisions of "ApCoCoA-1:BB.GenHomMultMat"
From ApCoCoAWiki
m (Bot: fixed typo) |
m (insert version info) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
+ | {{Version|1}} | ||
<command> | <command> | ||
<title>BB.GenHomMultMat</title> | <title>BB.GenHomMultMat</title> | ||
Line 7: | Line 8: | ||
</syntax> | </syntax> | ||
<description> | <description> | ||
− | Computes the generic homogeneous multiplication matrix for <tt>x[I]</tt> with respect to an order ideal. The inputs are an integer <tt>I</tt> and a list <tt>OO</tt> of terms that specify an order ideal. The second element of <tt>OO</tt> must be a non-constant polynomial. The output is a matrix of size <ref>Len</ref>(OO) x <ref>Len</ref>(OO) over the ring <tt>BBS=K[c_{ij}]</tt>. | + | Computes the generic homogeneous multiplication matrix for <tt>x[I]</tt> with respect to an order ideal. The inputs are an integer <tt>I</tt> and a list <tt>OO</tt> of terms that specify an order ideal. The second element of <tt>OO</tt> must be a non-constant polynomial. The output is a matrix of size <ref>CoCoA:Len|Len</ref>(OO) x <ref>CoCoA:Len|Len</ref>(OO) over the ring <tt>BBS=K[c_{ij}]</tt>. |
<itemize> | <itemize> | ||
<item>@param <em>I</em> An integer which specifies the indeterminate for which the generic homogeneous multiplication matrix will be computed.</item> | <item>@param <em>I</em> An integer which specifies the indeterminate for which the generic homogeneous multiplication matrix will be computed.</item> |
Latest revision as of 09:40, 7 October 2020
This article is about a function from ApCoCoA-1. |
BB.GenHomMultMat
Computes a generic homogeneous multiplication matrix.
Syntax
BB.GenHomMultMat(I:INT,OO:LIST):MAT
Description
Computes the generic homogeneous multiplication matrix for x[I] with respect to an order ideal. The inputs are an integer I and a list OO of terms that specify an order ideal. The second element of OO must be a non-constant polynomial. The output is a matrix of size Len(OO) x Len(OO) over the ring BBS=K[c_{ij}].
@param I An integer which specifies the indeterminate for which the generic homogeneous multiplication matrix will be computed.
@param OO A list of terms representing an order ideal.
@return The generic homogeneous multiplication matrix.
Example
Use QQ[x, y, z], DegRevLex; BB.GenHomMultMat(1, [1, x, x^2, y, z]); ------------------------------- Mat([ [0, 0, 0, 0, 0], [1, 0, 0, 0, 0], [0, 1, 0, BBS :: c[3,5], BBS :: c[3,3]], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0] ]) -------------------------------