Difference between revisions of "ApCoCoA-1:Weyl.WMulByMonom"

From ApCoCoAWiki
m (Bot: Category moved)
m (fixed links to namespace ApCoCoA)
Line 14: Line 14:
 
</itemize>
 
</itemize>
  
<em>Note:</em> Monomials and polynomials that are not in normal form should be first converted into normal form using <ref>Weyl.WNormalForm</ref>, otherwise you may get unexpected results.
+
<em>Note:</em> Monomials and polynomials that are not in normal form should be first converted into normal form using <ref>ApCoCoA-1:Weyl.WNormalForm|Weyl.WNormalForm</ref>, otherwise you may get unexpected results.
  
 
<example>
 
<example>
Line 30: Line 30:
 
   </description>
 
   </description>
 
     <seealso>
 
     <seealso>
       <see>Weyl.WNormalForm</see>
+
       <see>ApCoCoA-1:Weyl.WNormalForm|Weyl.WNormalForm</see>
       <see>Weyl.WMul</see>
+
       <see>ApCoCoA-1:Weyl.WMul|Weyl.WMul</see>
 
     </seealso>
 
     </seealso>
 
     <types>
 
     <types>

Revision as of 08:46, 7 October 2020

Weyl.WMulByMonom

Computes the product M*F of a Weyl monomial M and a Weyl polynomial F in normal form.

Syntax

Weyl.WMulByMonom(M:POLY,F:POLY):POLY

Description

This function multiplies a Weyl monomial M with a polynomial F and returns M*F as a Weyl polynomial in normal form.

  • @param M A Weyl monomial.

  • @param F A Weyl polynomial.

  • @return The product M*F, a Weyl polynomial in normal form.

Note: Monomials and polynomials that are not in normal form should be first converted into normal form using Weyl.WNormalForm, otherwise you may get unexpected results.

Example

A1::=QQ[x,d];	--Define appropriate ring
Use A1;
M:=x^3d^4; F:=x^3+d^3+3xd+5;
Weyl.WMulByMonom(M,F);
x^6d^4 + x^3d^7 + 3x^4d^5 + 12x^5d^3 + 17x^3d^4 + 36x^4d^2 + 24x^3d
-------------------------------
Weyl.WMulByMonom(F,M); -- note the input
ERROR: 1st parameter should be a Monomial!
CONTEXT: Error(<quotes>1st parameter should be a Monomial!</quotes>)
-------------------------------

See also

Weyl.WNormalForm

Weyl.WMul