Difference between revisions of "ApCoCoA-1:Num.QR"
From ApCoCoAWiki
m (Bot: Category moved) |
m (fixed links to namespace ApCoCoA) |
||
Line 31: | Line 31: | ||
</description> | </description> | ||
<seealso> | <seealso> | ||
− | <see>Introduction to CoCoAServer</see> | + | <see>ApCoCoA-1:Introduction to CoCoAServer|Introduction to CoCoAServer</see> |
− | <see>Num.SVD</see> | + | <see>ApCoCoA-1:Num.SVD|Num.SVD</see> |
− | <see>Num.EigenValues</see> | + | <see>ApCoCoA-1:Num.EigenValues|Num.EigenValues</see> |
− | <see>Num.EigenValuesAndVectors</see> | + | <see>ApCoCoA-1:Num.EigenValuesAndVectors|Num.EigenValuesAndVectors</see> |
− | <see>Num.EigenValuesAndAllVectors</see> | + | <see>ApCoCoA-1:Num.EigenValuesAndAllVectors|Num.EigenValuesAndAllVectors</see> |
</seealso> | </seealso> | ||
<types> | <types> |
Revision as of 08:38, 7 October 2020
Num.QR
Computes the QR-decomposition of a matrix.
Syntax
Num.QR(A:MAT):[Q:MAT,R:MAT]
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.
This command computes the QR-decomposition of a matrix using the external library Lapack, i.e. the matrix A will be decomposed into the product of an orthogonal matrix Q and an upper-right triangular matrix R.
@param A The matrix to decompose.
@return An orthogonal matrix Q and an upper-right triangular matrix R such that Q*R=A.
Example
Points:=Mat([[1,2,3],[2,3,4],[3,4,5]]); QR := Num.QR(Points); Dec(QR[1]*QR[2],3); -- CoCoAServer: computing Cpu Time = 0 ------------------------------- Mat([ [<quotes>0.999</quotes>, <quotes>1.999</quotes>, <quotes>2.999</quotes>], [<quotes>1.999</quotes>, <quotes>2.999</quotes>, <quotes>3.999</quotes>], [<quotes>2.999</quotes>, <quotes>3.999</quotes>, <quotes>4.999</quotes>] ]) -------------------------------
See also