Difference between revisions of "ApCoCoA-1:Num.EigenValues"
From ApCoCoAWiki
m (Bot: Category moved) |
m (fixed links to namespace ApCoCoA) |
||
Line 32: | Line 32: | ||
</description> | </description> | ||
<seealso> | <seealso> | ||
− | <see>Introduction to CoCoAServer</see> | + | <see>ApCoCoA-1:Introduction to CoCoAServer|Introduction to CoCoAServer</see> |
− | <see>Num.QR</see> | + | <see>ApCoCoA-1:Num.QR|Num.QR</see> |
− | <see>Num.SVD</see> | + | <see>ApCoCoA-1:Num.SVD|Num.SVD</see> |
− | <see>Num.EigenValuesAndVectors</see> | + | <see>ApCoCoA-1:Num.EigenValuesAndVectors|Num.EigenValuesAndVectors</see> |
− | <see>Num.EigenValuesAndAllVectors</see> | + | <see>ApCoCoA-1:Num.EigenValuesAndAllVectors|Num.EigenValuesAndAllVectors</see> |
</seealso> | </seealso> | ||
<types> | <types> |
Revision as of 08:37, 7 October 2020
Num.EigenValues
Computes the eigenvalues of a matrix.
Syntax
Num.EigenValues(A:MAT):MAT
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.
This function computes the approximate complex eigenvalues of the matrix A.
@param A A quadratic matrix with rational entries.
@return The return value is a matrix with two rows. Each column of this matrix represents one approximate complex eigenvalue of A, i.e. the first entry of a column is the real part and the second entry of the same column is the imaginary part of one complex eigenvalue.
Example
Use P::=QQ[x,y,z]; A:=Mat([[1,2,7,18],[2,4,9,12],[23,8,9,10],[7,5,3,2]]); Dec(Num.EigenValues(A),3); -- CoCoAServer: computing Cpu Time = 0.015 ------------------------------- Mat([ [<quotes>28.970</quotes>, <quotes>-13.677</quotes>, <quotes>0.353</quotes>, <quotes>0.353</quotes>], [<quotes>0</quotes>, <quotes>0</quotes>, <quotes>3.051</quotes>, <quotes>-3.051</quotes>] ]) -------------------------------
See also