Difference between revisions of "ApCoCoA-1:BB.HomASgens"
From ApCoCoAWiki
m (Bot: fixed typo) |
m (fixed links to namespace ApCoCoA) |
||
Line 7: | Line 7: | ||
</syntax> | </syntax> | ||
<description> | <description> | ||
− | This command computes the generators of the vanishing ideal of the homogeneous border basis scheme corresponding to the lifting of the <tt>K</tt>-th element of <ref>BB.ASneighbors</ref>(OO). | + | This command computes the generators of the vanishing ideal of the homogeneous border basis scheme corresponding to the lifting of the <tt>K</tt>-th element of <ref>ApCoCoA-1:BB.ASneighbors|BB.ASneighbors</ref>(OO). |
<itemize> | <itemize> | ||
− | <item>@param <em>K</em> An integer <tt>K</tt> in the range 1..Len(<ref>BB.ASneighbors</ref>(OO)).</item> | + | <item>@param <em>K</em> An integer <tt>K</tt> in the range 1..Len(<ref>ApCoCoA-1:BB.ASneighbors|BB.ASneighbors</ref>(OO)).</item> |
<item>@param <em>OO</em> A list of terms representing an order ideal.</item> | <item>@param <em>OO</em> A list of terms representing an order ideal.</item> | ||
<item>@return A list of generators of the vanishing ideal. The polynomials will belong to the ring <tt>BBS=K[c_{ij}]</tt>.</item> | <item>@return A list of generators of the vanishing ideal. The polynomials will belong to the ring <tt>BBS=K[c_{ij}]</tt>.</item> | ||
Line 18: | Line 18: | ||
<type>ideal</type> | <type>ideal</type> | ||
</types> | </types> | ||
− | <see>BB.ASgens</see> | + | <see>ApCoCoA-1:BB.ASgens|BB.ASgens</see> |
− | <see>BB.HomNDgens</see> | + | <see>ApCoCoA-1:BB.HomNDgens|BB.HomNDgens</see> |
− | <see>BB.NDgens</see> | + | <see>ApCoCoA-1:BB.NDgens|BB.NDgens</see> |
<key>HomASgens</key> | <key>HomASgens</key> |
Revision as of 07:56, 7 October 2020
BB.HomASgens
Computes the generators of the vanishing ideal of a homogeneous border basis scheme.
Syntax
BB.HomASgens(K:INT,OO:LIST):LIST
Description
This command computes the generators of the vanishing ideal of the homogeneous border basis scheme corresponding to the lifting of the K-th element of BB.ASneighbors(OO).
@param K An integer K in the range 1..Len(BB.ASneighbors(OO)).
@param OO A list of terms representing an order ideal.
@return A list of generators of the vanishing ideal. The polynomials will belong to the ring BBS=K[c_{ij}].