Difference between revisions of "ApCoCoA-1:BB.GenMultMat"

From ApCoCoAWiki
m (Bot: fixed typo)
m (fixed link)
Line 7: Line 7:
 
</syntax>
 
</syntax>
 
   <description>
 
   <description>
Computes the generic multiplication matrix for the <tt>I</tt>-th indeterminate with respect to an order ideal. The second element of <tt>OO</tt> must be a non-constant polynomial. The output is a matrix of size <ref>Len</ref>(OO) x <ref>Len</ref>(OO) over the ring <tt>BBS=K[c_{ij}]</tt>.
+
Computes the generic multiplication matrix for the <tt>I</tt>-th indeterminate with respect to an order ideal. The second element of <tt>OO</tt> must be a non-constant polynomial. The output is a matrix of size <ref>CoCoA:Len|Len</ref>(OO) x <ref>CoCoA:Len|Len</ref>(OO) over the ring <tt>BBS=K[c_{ij}]</tt>.
 
<itemize>
 
<itemize>
 
   <item>@param <em>I</em> An integer which specifies the indeterminate for which the generic multiplication matrix will be computed.</item>
 
   <item>@param <em>I</em> An integer which specifies the indeterminate for which the generic multiplication matrix will be computed.</item>

Revision as of 07:56, 7 October 2020

BB.GenMultMat

Computes a generic multiplication matrix.

Syntax

BB.GenMultMat(I:INT,OO:LIST):MAT

Description

Computes the generic multiplication matrix for the I-th indeterminate with respect to an order ideal. The second element of OO must be a non-constant polynomial. The output is a matrix of size Len(OO) x Len(OO) over the ring BBS=K[c_{ij}].

  • @param I An integer which specifies the indeterminate for which the generic multiplication matrix will be computed.

  • @param OO A list of terms representing an order ideal.

  • @return The generic multiplication matrix.

Example

Use QQ[x, y, z], DegRevLex;
BB.GenMultMat(1, [1, x, y, z]);

-------------------------------
Mat([
  [0, BBS :: c[1,6], BBS :: c[1,5], BBS :: c[1,3]],
  [1, BBS :: c[2,6], BBS :: c[2,5], BBS :: c[2,3]],
  [0, BBS :: c[3,6], BBS :: c[3,5], BBS :: c[3,3]],
  [0, BBS :: c[4,6], BBS :: c[4,5], BBS :: c[4,3]]
])
-------------------------------